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The invariant called knot Heegaard-Floer
Determines the genus—and more.

To distinguish transverse knots

(and it turns out there are lots!)
HFK opens up a new door.
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What is Heegaard-Floer homology?

dim(ﬁF\K,-(K; s)): Characteristics of HFK:
i » Bigraded;
» Euler characteristic is
11 Conway-Alexander polynomial;

» Max grading is knot genus;

1 z (Ozsvath-Szabé 2001)
2 » Determines knot fibration;
1 (Ghiggini, Ni 2006)
» Defined via pseudo-holomorphic
curves.

We will give a simple algorithm for
computing HFK. ..

...and so the world's simplest algorithm
for knot genus!
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X and one O per row and column.

Turn it into a knot: connect
X to O in each column:
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Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram,
rotate crossings so vertical crosses over
horizontal.

The knot is unchanged under
cyclic rotations:
Move top segment to bottom.
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Computing the Alexander polynomial

We categorify the following formula:

» Make matrix of t—inding #
(with extra row/column of 1's);



Computing the Alexander polynomial

We categorify the following formula:

= +t*(1 - t)" TA(K; t)

» Make matrix of ¢~Winding #
(with extra row/column of 1's);

» det determines the Conway-Alexander polynomial A
(n = size of diagram; here 6)
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> Generated by matchings between
horizontal and vertical gridcircles

(as counted in det for Alexander).
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empty rectangles:

Sum over all ways to switch
SW-NE corners of an empty
rectangle to NW-SE corners.
(Empty means: no X's, O's, or
other points in generator.)
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% decompose the union in
another way.




Computing HFK: 9> =0

Each term in 2 must have a

ﬁ/ \%] mate:
» If rectangles are disjoint,

take rectangles in either
order.
» If rectangles share a corner,

% [% decompose the union in
another way.




Computing HFK: Gradings on CK

In the plane,

removes one inversion.
For A, B, C C R?,

T(A,B) = #{,0P |ac A be B}
I(A— B, C) = 1I(A C) — I(B, C)

For x a generator, X the set of X's, O the set of of O’s, the
gradings are:

» Maslov: M(x):=Z(x—0,x — Q)+ 1.

» Alexander:
A(x) = 3(Z(x — 0,x — 0) — I(x — X,x — X) — (n — 1)).



Computing HFK: The answer

Theorem (Manolescu-Ozsvath-Sarkar)
For G a grid diagram for K,

H,(CK(G)) ~ HFK(K) @ V&1
where V := (Z/2)o,0 @ (Z/2)-1,-1.

Gillam and Baldwin used this to compute HFK for all knots
with < 11 crossings, including new values of knot genus.
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Improving the answer

To remove factors of V®71:

dim HFKi(K: s): HFK~: variant of HFK
i Module over Z/2[U]
U has degree (—1,—-2)
11 Related to HFK by Univ. Coeff. Thm.

To compute: Add one U; for each O

1 >
) ° Complex CK™(G) over Z/2[U4, ..., U]
1 0 counts rects. that contain only O's,
weighted by corresponding U;.
Theorem

(Manolescu-Ozsvath-Sarkar)

H.(CK™(G)) ~ HFK™ (K),
Each U; acts by U on the homology.
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dim HFK (K s):
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To remove factors of V®71:

HFK~: variant of HFK
Module over Z/2[U]
U has degree (—1,—2)

Related to HFK by Univ. Coeff. Thm.
To compute: Add one U; for each O

Complex CK™(G) over Z/2[U4, ..., U]
0 counts rects. that contain only O's,
weighted by corresponding U;.

Theorem
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H.(CK™(G)) ~ HFK™ (K),
Each U; acts by U on the homology.



Further variants

Can also:
> Allow rectangles to cross X's to get a filtered complex, and

> Add signs (in essentially unique way) to work over Z[U].
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Combinatorial invariance

Theorem (Manolescu-Ozsvath-Szabo-T.)

For any sequence of elementary grid moves, there is an explicit
chain map exhibiting invariance of HFK™.

Conjecture (Naturality or Functoriality)

The chain map depends only on isotopy class of sequence of

elementary grid moves. That is, oriented mapping class group of K
acts on HFK™ (K).



Elementary grid moves

» Cycle: Move left column to right, or top row to bottom.
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Elementary grid moves
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» Cycle: Move left column to right, or top row to bottom.
» Commute: Switch two non-interfering columns or rows.

» Stabilize: Introduce a notch at a corner.



Elementary grid moves
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» Cycle: Move left column to right, or top row to bottom.
» Commute: Switch two non-interfering columns or rows.

» Stabilize: Introduce a notch at a corner.

(Cromwell '95, Dynnikov '06)



Elementary grid moves

LJL L R
Rl R

» Cycle: Move left column to right, or top row to bottom.

~

» Commute: Switch two non-interfering columns or rows.
» Stabilize: Introduce a notch at a corner.
Where's Reidemeister 1117

(Cromwell '95, Dynnikov '06)



Chain map for commutation counts pentagons
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To construct a chain map for commutation, draw two versions of
the middle gridcircle on a single diagram.
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Chain map for commutation counts pentagons

OO, X

X

To construct a chain map for commutation, draw two versions of
the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two
gridcircles.
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Contact structures and knots

A contact structure is a twisted 2-plane field:
if « is a 1-form defining the plane field, a A da is positive.
(Warning: above contact structure is reversed.)

A Legendrian knot is a knot that is tangent to the plane field.
A transverse knot is a knot that is transverse to the plane field.

Transverse knots have one easy invariant, the self-linking number.

Question. Can we find transverse knots with the same classical
knot type and self-linking number?



Ways to stabilize

X —

Four ways to stabilize: Where to leave the empty square?



Ways to stabilize

P
1o

Four ways to stabilize: Where to leave the empty square?



Ways to stabilize

T
T

Four ways to stabilize: Where to leave the empty square?

» Two diagonal opposite ways preserve Legendrian knot.



Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

» Two diagonal opposite ways preserve Legendrian knot.



Ways to stabilize

- -

Four ways to stabilize: Where to leave the empty square?
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» Two diagonal opposite ways preserve Legendrian knot.

» Two adjacent ways preserve closed braid.
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Four ways to stabilize: Where to leave the empty square?
» Two diagonal opposite ways preserve Legendrian knot.

» Two adjacent ways preserve closed braid.

Warning: The Legendrian/transverse knots are mirrored.



Ways to stabilize

Transverse

Four ways to stabilize: Where to leave the empty square?
» Two diagonal opposite ways preserve Legendrian knot.
» Two adjacent ways preserve closed braid.

» Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.



Transverse invariant: Definition

X

X

X

X

Definition
The canonical generator x™(G) is given
by the upper-right corner of each X.

Facts:
» OxT =0. (The X's block any
rectangles.)
» [xT(G)] maps to [x"(G’)] under
commutation and 3 out of 4
stabilizations.

Theorem (Ozsvath-Szabd-T.)
[xt(G)] in HFK~(m(K)) is an invariant
of the transverse knot represented by G,

up to quasi-isomorphism of filtered
complexes.



Transverse invariant: Properties

Let G be a grid diagram representing the transverse knot 7.
» xt(G) lives in bigrading (s,2s), where s = @

» If 77 differs from 7 by a positive stabilization, then
[x*(7")] = Ux*(T)].

> [xT(7)] #0in HFK™.
Corollary
For any transverse knot T of topological type K,

s(T)+1

< 7(K) < &a(K)

where 7(K) is the largest Alexander grading which has an element
which is not U torsion.



Transverse invariant: Examples

Let 6(T) (resp. 6(T)) be the transverse invariant in HFK~(m(K))
(resp. HFK(m(K))).
6(7T) = 0 iff (7)) is divisible by U.

Theorem (Ng-Ozsvath-T.)

The knots m(10132) and m(12nx00) have two trans. reps. with
same sl, one with 8 = 0 and one with 6 # Q.

This technique also works for the (2,3) cable of the (2,3) torus
knot, originally found by Etnyre-Honda and Menasco-Matsuda.

Let 01 be the next differential in the spectral sequence on HFK.
Theorem (Ng-Ozsvath-T.)

The pretzel knots P(—4,—3,3) and P(—6,—3,3) have two trans.
reps. with same sl, one with ;1 o 9 = 0 and one with 010 ) #0.



Transverse invariant: Going further

Theorem (Ng-Ozsvath-T.)

If the Naturality Conjecture is true, then the twist knot 7, has two
trans. reps. with the same sl, with 0 in different orbits of the
mapping class group.

But 6 is not a complete invariant: Birman and Menasco have
classified closed 3-braids up to transverse isotopy.

In their small examples of distinct transverse knots, 6 lives in a
1-dimensional space, so cannot distinguish them.
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