Geometry of Soergel Bimodules

Ben Webster (joint with Geordie Williamson)

IAS/MIT

June 17th, 2007

Ben Webster (IAS/MIT)

Geometry of Soergel Bimodules

June 17th, 2007 1 / 20

- Algebra
- Geometry
- 2 Hochschild homology

3 Equivariant cohomology

- Equivariant formality
- Bott-Samelsons

This slide show can be downloaded from

http://math.berkeley.edu/~bwebste/HH-SB.pdf

Some references:

B. W. and G. W., A geometric model for the Hochschild homology of Soergel bimodules.

(http://math.berkeley.edu/ bwebste/hochschild-soergel.pdf)

- W. Soergel, Kategorie O, Perverse Garben und Moduln über den Koinvarianten zur Weylgruppe.
- W. Soergel, The combinatorics of Harish-Chandra bimodules.
- M. Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules.
- J. Bernstein and V. Lunts, *Equivariant sheaves and functors*.

Let $R = \mathbb{C}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n)$, and s_i be the map permuting x_i and x_{i+1} and let $G = SL(n, \mathbb{C})$.

Like so many objects in mathematics, Soergel bimodules have a number of definitions:

One which explains why anyone ever cared:

Definition

A **Soergel bimodule** is the image of a projective object in category \tilde{O} under Soergel's "combinatoric" functor \mathbb{V} .

- 2 One which is hands-on but totally unilluminating:
- 3 One which involves disgusting levels of machinery, but which ultimately is the best for working with:

Let $R = \mathbb{C}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n)$, and s_i be the map permuting x_i and x_{i+1} and let $G = SL(n, \mathbb{C})$.

Like so many objects in mathematics, Soergel bimodules have a number of definitions:

1 One which explains why anyone ever cared:

Definition

A **Soergel bimodule** is the image of a projective object in category $\tilde{\mathcal{O}}$ under Soergel's "combinatoric" functor \mathbb{V} .

- 2 One which is hands-on but totally unilluminating:
- One which involves disgusting levels of machinery, but which ultimately is the best for working with:

Let $R = \mathbb{C}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n)$, and s_i be the map permuting x_i and x_{i+1} and let $G = SL(n, \mathbb{C})$.

Like so many objects in mathematics, Soergel bimodules have a number of definitions:

- **1** One which explains why anyone ever cared: *projectives in* \tilde{O}
- 2 One which is hands-on but totally unilluminating:

Definition

A Soergel bimodule is a direct sum of summands of tensor products

 $R \otimes_{R^{s_{i_1}}} R \otimes_{R^{s_{i_2}}} \cdots \otimes_{R^{s_{i_m}}} R$

One which involves disgusting levels of machinery, but which ultimately is the best for working with:

Let $R = \mathbb{C}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n)$, and s_i be the map permuting x_i and x_{i+1} and let $G = SL(n, \mathbb{C})$.

Like so many objects in mathematics, Soergel bimodules have a number of definitions:

- I One which explains why anyone ever cared: *projectives in* $\tilde{\mathcal{O}}$
- 2 One which is hands-on but totally unilluminating: *tensor products*
- 3 One which involves disgusting levels of machinery, but which ultimately is the best for working with:

Definition

A Soergel bimodule is the hypercohomology of a semi-simple $B \times B$ -equivariant perverse sheaf on G.

Let $R = \mathbb{C}[x_1, \ldots, x_n]/(x_1 + \cdots + x_n)$, and s_i be the map permuting x_i and x_{i+1} and let $G = SL(n, \mathbb{C})$.

Like so many objects in mathematics, Soergel bimodules have a number of definitions:

- **1** One which explains why anyone ever cared: *projectives in* \tilde{O}
- 2 One which is hands-on but totally unilluminating: *tensor products*
- 3 One which involves disgusting levels of machinery, but which ultimately is the best for working with: *perverse sheaves*

While intimidating at first, a multiplicity of definitions is, in fact, a strength rather than a weakness, allowing us to our problems translate back and forth at will.

When n = 2, then

$$R = \mathbb{C}[x_1, x_2]/(x_1 + x_2) \cong \mathbb{C}[y]$$

with the action of s_1 sending $y \mapsto -y$. Thus, $\mathbb{R}^{s_1} = \mathbb{C}[y^2]$ and

$$R_1 \cong R \otimes_{R^{s_1}} R \cong \mathbb{C}[y \otimes 1, 1 \otimes y] \cdot r/(y^2 \otimes 1 - 1 \otimes y^2)$$

Algebra

Soergel bimodules for n = 2

When n = 2, then

$$R = \mathbb{C}[x_1, x_2]/(x_1 + x_2) \cong \mathbb{C}[y]$$

with the action of s_1 sending $y \mapsto -y$. Thus, $R^{s_1} = \mathbb{C}[y^2]$ and

$$R_1 \cong R \otimes_{R^{s_1}} R \cong \mathbb{C}[y \otimes 1, 1 \otimes y] \cdot r/(y^2 \otimes 1 - 1 \otimes y^2)$$

When n = 2, then

$$R = \mathbb{C}[x_1, x_2]/(x_1 + x_2) \cong \mathbb{C}[y]$$

with the action of s_1 sending $y \mapsto -y$. Thus, $R^{s_1} = \mathbb{C}[y^2]$ and

$$R_1 \cong R \otimes_{R^{s_1}} R \cong \mathbb{C}[y \otimes 1, 1 \otimes y] \cdot r/(y^2 \otimes 1 - 1 \otimes y^2)$$

Proposition

The elements r and $(1 \otimes y - y \otimes 1) \cdot r$ generate $R_1 \otimes_R R_1$ as an R-bimodule, and generate two summands, so $R_1 \otimes_R R_1 \cong R_1 \oplus R_1 \{2\}$.

く ロ ト く 同 ト く ヨ ト く ヨ

When n = 2, then

$$R = \mathbb{C}[x_1, x_2]/(x_1 + x_2) \cong \mathbb{C}[y]$$

with the action of s_1 sending $y \mapsto -y$. Thus, $R^{s_1} = \mathbb{C}[y^2]$ and

$$R_1 \cong R \otimes_{R^{s_1}} R \cong \mathbb{C}[y \otimes 1, 1 \otimes y] \cdot r/(y^2 \otimes 1 - 1 \otimes y^2)$$

Proposition

The elements r and $(1 \otimes y - y \otimes 1) \cdot r$ generate $R_1 \otimes_R R_1$ as an R-bimodule, and generate two summands, so $R_1 \otimes_R R_1 \cong R_1 \oplus R_1 \{2\}$.

Corollary

Every indecomposable Soergel bimodule for n = 2 is isomorphic to R or R_1 .

When n = 3, similar calculations show

Proposition

Every indecomposable Soergel bimodule for n = 2 is isomorphic to one of $R, R_1, R_2, R_1 \otimes_R R_2, R_2 \otimes_R R_1$ or $R \otimes_{R^{S_3}} R$.

Anyone used to playing with SL(3) will probably note that we have an obvious bijection from S_3 to the set of indecomposable Soergel bimodules:

 $1 \leftrightarrow R \qquad (12) \leftrightarrow R_1 \qquad (23) \leftrightarrow R_2$ (123) $\leftrightarrow R_2 \otimes_R R_1 \qquad (132) \leftrightarrow R_1 \otimes_R R_2 \qquad (13) \leftrightarrow R \otimes_{R^{S_3}} R$

< ロ > < 同 > < 回 > < 回 > .

When n = 3, similar calculations show

Proposition

Every indecomposable Soergel bimodule for n = 2 is isomorphic to one of $R, R_1, R_2, R_1 \otimes_R R_2, R_2 \otimes_R R_1$ or $R \otimes_{R^{S_3}} R$.

Anyone used to playing with SL(3) will probably note that we have an obvious bijection from S_3 to the set of indecomposable Soergel bimodules:

 $1 \leftrightarrow R \qquad (12) \leftrightarrow R_1 \qquad (23) \leftrightarrow R_2$ (123) $\leftrightarrow R_2 \otimes_R R_1 \qquad (132) \leftrightarrow R_1 \otimes_R R_2 \qquad (13) \leftrightarrow R \otimes_{R^{S_3}} R$

When n = 3, similar calculations show

Proposition

Every indecomposable Soergel bimodule for n = 2 is isomorphic to one of $R, R_1, R_2, R_1 \otimes_R R_2, R_2 \otimes_R R_1$ or $R \otimes_{R^{S_3}} R$.

Anyone used to playing with SL(3) will probably note that we have an obvious bijection from S_3 to the set of indecomposable Soergel bimodules:

$$1 \leftrightarrow R \qquad (12) \leftrightarrow R_1 \qquad (23) \leftrightarrow R_2$$

(123) $\leftrightarrow R_2 \otimes_R R_1 \qquad (132) \leftrightarrow R_1 \otimes_R R_2 \qquad (13) \leftrightarrow R \otimes_{R^{S_3}} R$

Indecomposable Soergel bimodules

Question

In general, is the set of indecomposable Soergel bimodules in bijection with S_n ?

Definition 2 is perfectly useless at answering this sort of question. But from the perspectives of Definitions 1 or 3, it borders on obvious:

Proposition (Soergel)

Every indecomposable Soergel bimodule is of the form

$$R_w = IH^*_{B imes B}(\overline{BwB}) = \mathbb{H}^*_{B imes B}(\mathrm{IC}(\overline{BwB})), \bullet$$
 What?

for $w \in S_n$ (and these are pairwise not isomorphic).

Let $G_w = \overline{BwB}$.

く ロ ト く 同 ト く ヨ ト く ヨ

Indecomposable Soergel bimodules

Question

In general, is the set of indecomposable Soergel bimodules in bijection with S_n ?

Definition 2 is perfectly useless at answering this sort of question. But from the perspectives of Definitions 1 or 3, it borders on obvious:

Proposition (Soergel)

Every indecomposable Soergel bimodule is of the form

$$R_w = IH^*_{B imes B}(\overline{BwB}) = \mathbb{H}^*_{B imes B}(\operatorname{IC}(\overline{BwB})), ullet$$
 What?

for $w \in S_n$ (and these are pairwise not isomorphic).

Let $G_w = \overline{BwB}$.

Bott-Samelson Soergel bimodules

Since they appear in the definition of Khovanov-Rozansky homology, we will also be interested in the **Bott-Samelson bimodules**

$$R_{\mathbf{i}} \cong R \otimes_{R^{s_{i_1}}} \cdots \otimes_{R^{s_{i_m}}} R \cong R_{s_{i_1}} \otimes_R \cdots \otimes_R R_{s_{i_m}}$$

In the formalism that Rasmussen and Rozansky have used, this is the bimodule corresponding to a singular braid diagram.

If $\mathbf{i}' = \{i_1, \dots, \hat{i}_k, \dots, i_m\}$, then the modules $R_\mathbf{i}$ and $R_{\mathbf{i}'}$ have natural maps $\pi_k : R_\mathbf{i}\{1\} \to R_{\mathbf{i}'}$ and $\rho_k : R_{\mathbf{i}'}\{1\} \to R_\mathbf{i}$.

All differentials in the Rouquier complex are built from these natural maps.

Bott-Samelson Soergel bimodules

Since they appear in the definition of Khovanov-Rozansky homology, we will also be interested in the **Bott-Samelson bimodules**

$$R_{\mathbf{i}} \cong R \otimes_{R^{s_{i_1}}} \cdots \otimes_{R^{s_{i_m}}} R \cong R_{s_{i_1}} \otimes_R \cdots \otimes_R R_{s_{i_m}}$$

In the formalism that Rasmussen and Rozansky have used, this is the bimodule corresponding to a singular braid diagram.

If $\mathbf{i}' = \{i_1, \dots, \hat{i}_k, \dots, i_m\}$, then the modules $R_\mathbf{i}$ and $R_{\mathbf{i}'}$ have natural maps $\pi_k : R_\mathbf{i}\{1\} \to R_{\mathbf{i}'}$ and $\rho_k : R_{\mathbf{i}'}\{1\} \to R_{\mathbf{i}}$.

All differentials in the Rouquier complex are built from these natural maps.

Bott-Samelson spaces

Let P_i the parabolic preserving the standard flag minus its *i*-dimensional subspace, and let

$$G_{\mathbf{i}} \cong P_{i_1} \times_B P_{i_2} \times_B \cdots \times_B P_{i_m}.$$

This space is smooth, and has a $B \times B$ -action by left and right multiplication.

Proposition

For all $\mathbf{i} = (i_1, \ldots, i_m)$, we have $R_{\mathbf{i}} \cong H^*_{B \times B}(G_{\mathbf{i}})$.

We have a natural inclusion $G_{\mathbf{i}'} \subset G_{\mathbf{i}}$, and the maps ρ_k, π_k are simply pushforward and pullback in cohomology.

く ロ ト く 同 ト く ヨ ト く ヨ

Bott-Samelson spaces

Let P_i the parabolic preserving the standard flag minus its *i*-dimensional subspace, and let

$$G_{\mathbf{i}} \cong P_{i_1} \times_B P_{i_2} \times_B \cdots \times_B P_{i_m}.$$

This space is smooth, and has a $B \times B$ -action by left and right multiplication.

Proposition

For all
$$\mathbf{i} = (i_1, \ldots, i_m)$$
, we have $R_{\mathbf{i}} \cong H^*_{B \times B}(G_{\mathbf{i}})$.

We have a natural inclusion $G_{\mathbf{i}'} \subset G_{\mathbf{i}}$, and the maps ρ_k, π_k are simply pushforward and pullback in cohomology.

Hochschild homology

Hochschild homology also naturally appears in the construction of KR homology. It is the derived functor of $HH^0(M) = M/[R, M]$ where as usual

$$[R,M] = R \cdot \{r \cdot m - m \cdot r | r \in R, m \in M\} \cdot R \subset M.$$

Definition

For any projective resolution of M,

$$\mathbf{P}^{\bullet} = \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow 0$$

 $HH^*(M)$ is the homology of the complex $HH^0(\mathbf{P}^{\bullet})$.

Note that $HH^*(R_w)$ has the obvious "Hochschild" grading (which is independent of any grading on *R*) and another "polynomial" grading which arises from using a graded projective resolution of R_w .

Ben Webster (IAS/MIT)

June 17th, 2007 10 / 20

Hochschild homology

Hochschild homology also naturally appears in the construction of KR homology. It is the derived functor of $HH^0(M) = M/[R, M]$ where as usual

$$[R,M] = R \cdot \{r \cdot m - m \cdot r | r \in R, m \in M\} \cdot R \subset M.$$

Definition

For any projective resolution of M,

$$\mathbf{P}^{\bullet} = \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow 0$$

 $HH^*(M)$ is the homology of the complex $HH^0(\mathbf{P}^{\bullet})$.

Note that $HH^*(R_w)$ has the obvious "Hochschild" grading (which is independent of any grading on *R*) and another "polynomial" grading which arises from using a graded projective resolution of R_w .

Ben Webster (IAS/MIT)

June 17th, 2007 10 / 20

Hochschild homology

Hochschild homology also naturally appears in the construction of KR homology. It is the derived functor of $HH^0(M) = M/[R, M]$ where as usual

$$[R,M] = R \cdot \{r \cdot m - m \cdot r | r \in R, m \in M\} \cdot R \subset M.$$

Definition

For any projective resolution of M,

$$\mathbf{P}^{\bullet} = \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow 0$$

 $HH^*(M)$ is the homology of the complex $HH^0(\mathbf{P}^{\bullet})$.

Note that $HH^*(R_w)$ has the obvious "Hochschild" grading (which is independent of any grading on *R*) and another "polynomial" grading which arises from using a graded projective resolution of R_w .

Ben Webster (IAS/MIT)

June 17th, 2007 10 / 20

Hochschild homology as extension of scalars

Consider an R - R bimodule M as an $R \otimes R$ module. Note that the R-module M/[R, M] can be rewritten as the extension of scalars

 $M/[R,M] \cong M \otimes_{R \otimes R} R$

By the standard yoga of homological algebra, Hochschild homology can be reinterpreted as a derived extension of scalars.

 $HH^*(M) \cong M \overset{L}{\otimes}_{R \otimes R} R$

Hochschild homology can thus be interpreted geometrically using Bernstein and Lunts's equivalence between the equivariant derived category $D_T(pt)$ with dg-modules over $H_T^*(pt) \cong R$.

Ben Webster (IAS/MIT)

Hochschild homology as extension of scalars

Consider an R - R bimodule M as an $R \otimes R$ module. Note that the R-module M/[R, M] can be rewritten as the extension of scalars

 $M/[R,M] \cong M \otimes_{R \otimes R} R$

By the standard yoga of homological algebra, Hochschild homology can be reinterpreted as a derived extension of scalars.

$$HH^*(M) \cong M \overset{L}{\otimes}_{R \otimes R} R$$

Hochschild homology can thus be interpreted geometrically using Bernstein and Lunts's equivalence between the equivariant derived category $D_T(pt)$ with dg-modules over $H_T^*(pt) \cong R$.

Ben Webster (IAS/MIT)

Hochschild homology as extension of scalars

Consider an R - R bimodule M as an $R \otimes R$ module. Note that the R-module M/[R, M] can be rewritten as the extension of scalars

 $M/[R,M] \cong M \otimes_{R \otimes R} R$

By the standard yoga of homological algebra, Hochschild homology can be reinterpreted as a derived extension of scalars.

$$HH^*(M) \cong M \overset{L}{\otimes}_{R \otimes R} R$$

Hochschild homology can thus be interpreted geometrically using Bernstein and Lunts's equivalence between the equivariant derived category $D_T(pt)$ with dg-modules over $H_T^*(pt) \cong R$.

The geometry of Hochschild homology

While the general story has some surprising subtleties, we get a rather simple answer for Soergel bimodules.

Proposition (W.-Williamson)

 $HH^*(R_w) \cong IH^*_B(G_w) \cong IH^*_T(G_w) \qquad HH^*(R_i) \cong H^*_B(G_i) \cong H^*_T(G_i)$

where B, T acts on G_w, G_i by conjugation. This isomorphism is "functorial", *i.e.* for any map φ of $B \times B$ -sheaves, we have

 $HH^*(\mathbb{H}^*_{B\times B}(\varphi)) = \mathbb{H}^*_B(\varphi)$

and takes the natural grading on cohomology to the "polynomial" grading on *HH*^{*} minus the "Hochschild" grading.

Keep in mind that if G_w is smooth, then $IH_B^*(G_w) \cong H_B^*(G_w)$.

The geometry of Hochschild homology

While the general story has some surprising subtleties, we get a rather simple answer for Soergel bimodules.

Proposition (W.-Williamson)

 $HH^*(R_w) \cong IH^*_B(G_w) \cong IH^*_T(G_w) \qquad HH^*(R_i) \cong H^*_B(G_i) \cong H^*_T(G_i)$

where B, T acts on G_w, G_i by conjugation. This isomorphism is "functorial", *i.e.* for any map φ of $B \times B$ -sheaves, we have

 $HH^*(\mathbb{H}^*_{B\times B}(\varphi))=\mathbb{H}^*_B(\varphi)$

and takes the natural grading on cohomology to the "polynomial" grading on *HH*^{*} minus the "Hochschild" grading.

Keep in mind that if G_w is smooth, then $IH_B^*(G_w) \cong H_B^*(G_w)$.

Equivariant cohomology is easiest to understand in the presence of equivariant formality.

Definition

We say a *T*-space X is **equivariantly formal** if one of the following equivalent conditions holds

 $\blacksquare H^*_T(X)$ is free as a module over R.

- $\blacksquare H^*_T(X) \cong R \otimes_{\mathbb{C}} H^*(X).$
- $\operatorname{dim}_{\mathbb{C}} H^*(X^T) = \operatorname{dim}_{\mathbb{C}} H^*(X).$
- $\blacksquare \dim_{\mathbb{C}} H^*(X^T) \geq \dim_{\mathbb{C}} H^*(X).$

l'heorem

If X is equivariantly formal, then the pullback map $H_T^*(X) \to H_T^*(X^T)$ injective and is an isomorphism after tensoring with $Q = (R^{\times})^{-1}R$.

• • • • • • • • • • • • •

Equivariant cohomology is easiest to understand in the presence of equivariant formality.

Definition

We say a *T*-space *X* is **equivariantly formal** if one of the following equivalent conditions holds

 $H_T^*(X) \text{ is free as a module over } R.$ $H_T^*(X) \cong R \otimes_{\mathbb{C}} H^*(X).$ $\dim_{\mathbb{C}} H^*(X^T) = \dim_{\mathbb{C}} H^*(X).$ $\dim_{\mathbb{C}} H^*(X^T) \ge \dim_{\mathbb{C}} H^*(X).$

l'heorem

If X is equivariantly formal, then the pullback map $H^*_T(X) o H^*_T(X^T)$ injective and is an isomorphism after tensoring with $Q = (R^{\times})^{-1}R$.

• • • • • • • • • • • •

Equivariant cohomology is easiest to understand in the presence of equivariant formality.

Definition

We say a T-space X is **equivariantly formal** if one of the following equivalent conditions holds

- **1** $H^*_T(X)$ is free as a module over R.
- $H^*_T(X) \cong R \otimes_{\mathbb{C}} H^*(X).$
- $\dim_{\mathbb{C}} H^*(X^T) = \dim_{\mathbb{C}} H^*(X).$
- 4 dim_{\mathbb{C}} $H^*(X^T) \ge \dim_{\mathbb{C}} H^*(X)$.

Theorem

If X is equivariantly formal, then the pullback map $H_T^*(X) \to H_T^*(X^T)$ is injective and is an isomorphism after tensoring with $Q = (R^{\times})^{-1}R$.

イロト イポト イヨト イヨト

Equivariant cohomology is easiest to understand in the presence of equivariant formality.

Definition

We say a *T*-space *X* is **equivariantly formal** if one of the following equivalent conditions holds

- **1** $H_T^*(X)$ is free as a module over R.
- $H^*_T(X) \cong R \otimes_{\mathbb{C}} H^*(X).$
- $\dim_{\mathbb{C}} H^*(X^T) = \dim_{\mathbb{C}} H^*(X).$
- 4 dim_{\mathbb{C}} $H^*(X^T) \ge \dim_{\mathbb{C}} H^*(X)$.

Theorem

If X is equivariantly formal, then the pullback map $H_T^*(X) \to H_T^*(X^T)$ is injective and is an isomorphism after tensoring with $Q = (R^{\times})^{-1}R$.

イロト イポト イヨト イヨト

Equivariant cohomology is easiest to understand in the presence of equivariant formality.

Definition

We say a *T*-space *X* is **equivariantly formal** if one of the following equivalent conditions holds

- **1** $H_T^*(X)$ is free as a module over R.
- $H^*_T(X) \cong R \otimes_{\mathbb{C}} H^*(X).$
- $\dim_{\mathbb{C}} H^*(X^T) = \dim_{\mathbb{C}} H^*(X).$
- 4 dim_{\mathbb{C}} $H^*(X^T) \ge \dim_{\mathbb{C}} H^*(X)$.

Theorem

If X is equivariantly formal, then the pullback map $H_T^*(X) \to H_T^*(X^T)$ is injective and is an isomorphism after tensoring with $Q = (R^{\times})^{-1}R$.

イロト イポト イヨト イヨト

Equivariant cohomology is easiest to understand in the presence of equivariant formality.

Definition

We say a *T*-space *X* is **equivariantly formal** if one of the following equivalent conditions holds

- **1** $H_T^*(X)$ is free as a module over R.
- 2 $H^*_T(X) \cong R \otimes_{\mathbb{C}} H^*(X).$
- $\dim_{\mathbb{C}} H^*(X^T) = \dim_{\mathbb{C}} H^*(X).$
- 4 dim_{\mathbb{C}} $H^*(X^T) \ge \dim_{\mathbb{C}} H^*(X)$.

Theorem

If X is equivariantly formal, then the pullback map $H_T^*(X) \to H_T^*(X^T)$ is injective and is an isomorphism after tensoring with $Q = (R^{\times})^{-1}R$.

Equivariant cohomology is easiest to understand in the presence of equivariant formality.

Definition

We say a T-space X is **equivariantly formal** if one of the following equivalent conditions holds

- **1** $H_T^*(X)$ is free as a module over R.
- $H^*_T(X) \cong R \otimes_{\mathbb{C}} H^*(X).$

$$\dim_{\mathbb{C}} H^*(X^T) = \dim_{\mathbb{C}} H^*(X).$$

 $4 \dim_{\mathbb{C}} H^*(X^T) \geq \dim_{\mathbb{C}} H^*(X).$

Theorem

If X is equivariantly formal, then the pullback map $H_T^*(X) \to H_T^*(X^T)$ is injective and is an isomorphism after tensoring with $Q = (R^{\times})^{-1}R$.

Ben Webster (IAS/MIT)

Theorem (Rasmussen, W.-Williamson)

The *T*-spaces G_i equivariantly formal with respect to the conjugation *T*-action for all **i**. Equivalently, the sheaves $IC(G_w)$ are equivariantly formal for all w.

Proof: Rasmussen proved algebraically that $HH^*(R_i)$ is free. By definition 1, this implies equivariant formality.

Corollary

For all w, we have $HH^*(R_i) \cong R \otimes H^*(G_i)$.

Applying the Hirsch lemma to the fibration $G_i \rightarrow G_i/B$, and taking the Euler characteristic of the resulting complex shows Rasmussen's results indentifying a specialization of the Hilbert series of $HH^*(R_i)$ with the Hilbert series of $H^*(G_i/B)$.

(日)

Theorem (Rasmussen, W.-Williamson)

The *T*-spaces G_i equivariantly formal with respect to the conjugation *T*-action for all **i**. Equivalently, the sheaves $IC(G_w)$ are equivariantly formal for all w.

Proof: Rasmussen proved algebraically that $HH^*(R_i)$ is free. By definition 1, this implies equivariant formality.

Corollary

For all w, we have $HH^*(R_i) \cong R \otimes H^*(G_i)$.

Applying the Hirsch lemma to the fibration $G_i \rightarrow G_i/B$, and taking the Euler characteristic of the resulting complex shows Rasmussen's results indentifying a specialization of the Hilbert series of $HH^*(R_i)$ with the Hilbert series of $H^*(G_i/B)$.

(日)

Theorem (Rasmussen, W.-Williamson)

The *T*-spaces G_i equivariantly formal with respect to the conjugation *T*-action for all **i**. Equivalently, the sheaves $IC(G_w)$ are equivariantly formal for all w.

Proof: Rasmussen proved algebraically that $HH^*(R_i)$ is free. By definition 1, this implies equivariant formality.

Corollary

For all w, we have $HH^*(R_i) \cong R \otimes H^*(G_i)$.

Applying the Hirsch lemma to the fibration $G_i \rightarrow G_i/B$, and taking the Euler characteristic of the resulting complex shows Rasmussen's results indentifying a specialization of the Hilbert series of $HH^*(R_i)$ with the Hilbert series of $H^*(G_i/B)$.

Theorem (Rasmussen, W.-Williamson)

The *T*-spaces G_i equivariantly formal with respect to the conjugation *T*-action for all **i**. Equivalently, the sheaves $IC(G_w)$ are equivariantly formal for all w.

Proof: Rasmussen proved algebraically that $HH^*(R_i)$ is free. By definition 1, this implies equivariant formality.

Corollary

For all w, we have $HH^*(R_i) \cong R \otimes H^*(G_i)$.

Applying the Hirsch lemma to the fibration $G_i \rightarrow G_i/B$, and taking the Euler characteristic of the resulting complex shows Rasmussen's results indentifying a specialization of the Hilbert series of $HH^*(R_i)$ with the Hilbert series of $H^*(G_i/B)$.

Gradings

Since G_i is smooth and equivariantly formal, we can separate the Hochschild and polynomial gradings.

Recall that by the Künneth theorem, $H_T^*(G_i^T) \cong R \otimes_{\mathbb{C}} H^*(G_i)$, so we can write the usual grading as a sum of "equivariant" and "topological" gradings.

By the equivariant formality, the pullback map $H_T^*(G_i) \to H_T^*(G_i^T)$ is injective. Using the above splitting, we can give $H_T^*(G_i)$ a similar bigrading.

Proposition

The isomorphism $H_T^*(G_i) \cong HH^*(R_i)$ takes the "topological" to the "Hochschild" grading and the "equivariant" to the "polynomial" minus twice the "Hochschild."

く ロ ト く 同 ト く ヨ ト く ヨ

Gradings

Since G_i is smooth and equivariantly formal, we can separate the Hochschild and polynomial gradings.

Recall that by the Künneth theorem, $H_T^*(G_i^T) \cong R \otimes_{\mathbb{C}} H^*(G_i)$, so we can write the usual grading as a sum of "equivariant" and "topological" gradings.

By the equivariant formality, the pullback map $H_T^*(G_i) \to H_T^*(G_i^T)$ is injective. Using the above splitting, we can give $H_T^*(G_i)$ a similar bigrading.

Proposition

The isomorphism $H_T^*(G_i) \cong HH^*(R_i)$ takes the "topological" to the "Hochschild" grading and the "equivariant" to the "polynomial" minus twice the "Hochschild."

Gradings

Since G_i is smooth and equivariantly formal, we can separate the Hochschild and polynomial gradings.

Recall that by the Künneth theorem, $H_T^*(G_i^T) \cong R \otimes_{\mathbb{C}} H^*(G_i)$, so we can write the usual grading as a sum of "equivariant" and "topological" gradings.

By the equivariant formality, the pullback map $H_T^*(G_i) \to H_T^*(G_i^T)$ is injective. Using the above splitting, we can give $H_T^*(G_i)$ a similar bigrading.

Proposition

The isomorphism $H_T^*(G_i) \cong HH^*(R_i)$ takes the "topological" to the "Hochschild" grading and the "equivariant" to the "polynomial" minus twice the "Hochschild."

Since G_i is smooth and equivariantly formal, we can separate the Hochschild and polynomial gradings.

Recall that by the Künneth theorem, $H_T^*(G_i^T) \cong R \otimes_{\mathbb{C}} H^*(G_i)$, so we can write the usual grading as a sum of "equivariant" and "topological" gradings.

By the equivariant formality, the pullback map $H_T^*(G_i) \to H_T^*(G_i^T)$ is injective. Using the above splitting, we can give $H_T^*(G_i)$ a similar bigrading.

Proposition

The isomorphism $H_T^*(G_i) \cong HH^*(R_i)$ takes the "topological" to the "Hochschild" grading and the "equivariant" to the "polynomial" minus twice the "Hochschild."

The Hochschild homology of smooth Soergel bimodules

Also, we can use this theorem to describe the Hochschild homology of smooth Soergel bimodules. Assume G_w is smooth.

Proposition (W.-Williamson)

We have an isomorphism

$$HH^*(R_w)\cong R\otimes_{\mathbb{C}} H^*(G_w)\cong R\otimes_{\mathbb{C}}\wedge^{ullet}(\gamma_1,\ldots,\gamma_{n-1})$$

where the # of indices i with deg(γ_i) = (2m, 1) is the number of positive roots α with w(α) negative with $\langle \alpha, \rho \rangle = m - 1$ minus the number with $\langle \alpha, \rho \rangle = m$.

It is worth noting that $w \in S_n$ with G_w smooth are characterized combinatorially by pattern avoidance, and as the varieties defined by non-crossing inclusions.

The Hochschild homology of smooth Soergel bimodules

Also, we can use this theorem to describe the Hochschild homology of smooth Soergel bimodules. Assume G_w is smooth.

Proposition (W.-Williamson)

We have an isomorphism

$$HH^*(R_w)\cong R\otimes_{\mathbb{C}} H^*(G_w)\cong R\otimes_{\mathbb{C}}\wedge^ullet(\gamma_1,\ldots,\gamma_{n-1})$$

where the # of indices i with deg(γ_i) = (2m, 1) is the number of positive roots α with w(α) negative with $\langle \alpha, \rho \rangle = m - 1$ minus the number with $\langle \alpha, \rho \rangle = m$.

It is worth noting that $w \in S_n$ with G_w smooth are characterized combinatorially by pattern avoidance, and as the varieties defined by non-crossing inclusions.

< □ > < □ > < □ > < □ >

The Hochschild homology of smooth Soergel bimodules

Also, we can use this theorem to describe the Hochschild homology of smooth Soergel bimodules. Assume G_w is smooth.

Proposition (W.-Williamson)

We have an isomorphism

$$H\!H^*(R_w)\cong R\otimes_{\mathbb{C}} H^*(G_w)\cong R\otimes_{\mathbb{C}}\wedge^ullet(\gamma_1,\ldots,\gamma_{n-1})$$

where the # of indices i with deg(γ_i) = (2m, 1) is the number of positive roots α with w(α) negative with $\langle \alpha, \rho \rangle = m - 1$ minus the number with $\langle \alpha, \rho \rangle = m$.

It is worth noting that $w \in S_n$ with G_w smooth are characterized combinatorially by pattern avoidance, and as the varieties defined by non-crossing inclusions.

Ben Webster (IAS/MIT)

June 17th, 2007 16 / 20

The structure of G_i

Of course, the Holy Grail of this business is really properly understanding $H_T^*(G_i)$. Since this space is equivariantly formal, understanding $H^*(G_i)$ and $H^*(G_i)$ would be a good start.

Proposition

The fixed points of the conjugation T action on K_i is the subset

$$G_{\mathbf{i}}^{T} =$$
 $T \cdot (s_{1}^{\epsilon_{1}}, \dots, s_{m}^{\epsilon_{m}})$

So $H^*(K_i^T)$ is just a number of copies of $H^*(T)$.

Question

What is $H^*(G_i)$? We know that $\dim_{\mathbb{C}} H^*(G_i) = \dim_{\mathbb{C}} H^*(G_i^T)$ and not much else.

• • • • • • • • • • • • • •

The structure of G_i

Of course, the Holy Grail of this business is really properly understanding $H_T^*(G_i)$. Since this space is equivariantly formal, understanding $H^*(G_i)$ and $H^*(G_i)$ would be a good start.

Proposition

The fixed points of the conjugation T action on K_i is the subset

$$G_{\mathbf{i}}^{T} = \bigsqcup_{\epsilon_{i} \in \{0,1\}; s_{1}^{\epsilon_{1}} \cdots s_{m}^{\epsilon_{m}} = e} T \cdot (s_{1}^{\epsilon_{1}}, \dots, s_{m}^{\epsilon_{m}})$$

So $H^*(K_i^T)$ is just a number of copies of $H^*(T)$.

Question

What is $H^*(G_i)$? We know that $\dim_{\mathbb{C}} H^*(G_i) = \dim_{\mathbb{C}} H^*(G_i^T)$ and not much else.

• □ ▶ • • □ ▶ • • □ ▶ • •

The structure of G_i

Of course, the Holy Grail of this business is really properly understanding $H_T^*(G_i)$. Since this space is equivariantly formal, understanding $H^*(G_i)$ and $H^*(G_i)$ would be a good start.

Proposition

The fixed points of the conjugation T action on K_i is the subset

$$G_{\mathbf{i}}^{T} = \bigsqcup_{\epsilon_{i} \in \{0,1\}; s_{1}^{\epsilon_{1}} \cdots s_{m}^{\epsilon_{m}} = e} T \cdot (s_{1}^{\epsilon_{1}}, \dots, s_{m}^{\epsilon_{m}})$$

So $H^*(K_i^T)$ is just a number of copies of $H^*(T)$.

Question

What is $H^*(G_i)$? We know that $\dim_{\mathbb{C}} H^*(G_i) = \dim_{\mathbb{C}} H^*(G_i^T)$ and not much else.

The pullback morphism $H^*_T(G_i) \to H^*_T(G_i^T)$

From geometry, we get a map

$$\pi_{\mathbf{s}}: R_{\mathbf{i}} \cong H^*_{T \times T}(G_{\mathbf{i}}) \to H^*_{T \times T}(T \cdot (s_1^{\epsilon_1}, \dots, s_m^{\epsilon_m})) \cong R$$

for each sequence **s**, such that $s_1^{\epsilon_1} \cdots s_m^{\epsilon_m} = e$.

This can be defined algebraically by $\pi_{i_1,\epsilon_1} \otimes \cdots \otimes \pi_{i_m,\epsilon_m}$ where $\pi_{i_i,\epsilon_i}: R_i \to R(s_i^{\epsilon})$ (here $R(s_i^{\epsilon})$ is R with the right action twisted by s_i^{ϵ}) is the map $\pi_{i,\epsilon}(a \otimes b) = a(b^{s_i^{\epsilon}}).$

By equivariant formality, the map $HH^*(\bigoplus_s \pi_s)$ is injective and an isomorphism after tensoring with the fraction field Q.

Summary: our model

- gives a uniform description of the Hochschild homology of indecomposable and Bott-Samelson Soergel bimodules.
- allows us to compute certain cases, as well as leverage for understanding general properties of this homology.
- gives a geometric description of the Rouquier complex.

What we hope for is

- a better understanding of the Bott-Samelson space.
- a better understanding of non-smooth cases.
- geometric methods for finding simplifications of the Rouquier complex, and more generally, applications to knot theory.

Summary: our model

- gives a uniform description of the Hochschild homology of indecomposable and Bott-Samelson Soergel bimodules.
- allows us to compute certain cases, as well as leverage for understanding general properties of this homology.
- gives a geometric description of the Rouquier complex.

What we hope for is

- a better understanding of the Bott-Samelson space.
- a better understanding of non-smooth cases.
- geometric methods for finding simplifications of the Rouquier complex, and more generally, applications to knot theory.

Summary: our model

- gives a uniform description of the Hochschild homology of indecomposable and Bott-Samelson Soergel bimodules.
- allows us to compute certain cases, as well as leverage for understanding general properties of this homology.
- gives a geometric description of the Rouquier complex.

- a better understanding of the Bott-Samelson space.
- a better understanding of non-smooth cases.
- geometric methods for finding simplifications of the Rouquier complex, and more generally, applications to knot theory.

Summary: our model

- gives a uniform description of the Hochschild homology of indecomposable and Bott-Samelson Soergel bimodules.
- allows us to compute certain cases, as well as leverage for understanding general properties of this homology.
- gives a geometric description of the Rouquier complex.

- a better understanding of the Bott-Samelson space.
- a better understanding of non-smooth cases.
- geometric methods for finding simplifications of the Rouquier complex, and more generally, applications to knot theory.

Summary: our model

- gives a uniform description of the Hochschild homology of indecomposable and Bott-Samelson Soergel bimodules.
- allows us to compute certain cases, as well as leverage for understanding general properties of this homology.
- gives a geometric description of the Rouquier complex.

- a better understanding of the Bott-Samelson space.
- a better understanding of non-smooth cases.
- geometric methods for finding simplifications of the Rouquier complex, and more generally, applications to knot theory.

Summary: our model

- gives a uniform description of the Hochschild homology of indecomposable and Bott-Samelson Soergel bimodules.
- allows us to compute certain cases, as well as leverage for understanding general properties of this homology.
- gives a geometric description of the Rouquier complex.

- a better understanding of the Bott-Samelson space.
- a better understanding of non-smooth cases.
- geometric methods for finding simplifications of the Rouquier complex, and more generally, applications to knot theory.

Summary: our model

- gives a uniform description of the Hochschild homology of indecomposable and Bott-Samelson Soergel bimodules.
- allows us to compute certain cases, as well as leverage for understanding general properties of this homology.
- gives a geometric description of the Rouquier complex.

- a better understanding of the Bott-Samelson space.
- a better understanding of non-smooth cases.
- geometric methods for finding simplifications of the Rouquier complex, and more generally, applications to knot theory.

Equivariant cohomology

Let EG be a contractible space on which G acts freely.

Definition

The equivariant cohomology $H^*_G(X) = \mathbb{H}^*_G(\mathbb{C}_X)$ of a *G*-space *X* is the cohomology of the Borel space $EG \times_G X$. In particular, $H^*_G(pt) \cong H^*(BG)$ where BG = EG/G.

There is a variant of equivariant cohomology called **equivariant intersection cohomology** $IH_G^*(X) = \mathbb{H}_G^*(\mathbf{IC}_X)$ which is better suited for singular spaces, but is the same as $H_G^*(X)$ for smooth spaces.

We have a map $EG \times_G X \to BG$, giving us an action of $H^*_G(pt)$ on $IH^*_G(X)$.

Proposition

We have a natural isomorphism $H_B^*(pt) \cong R$, so $H_{B\times B}^*(pt) \cong R \otimes R$. This geometric action makes R_w into an R - R-bimodule. Back to Socret-land.

Equivariant cohomology

Let EG be a contractible space on which G acts freely.

Definition

The equivariant cohomology $H^*_G(X) = \mathbb{H}^*_G(\mathbb{C}_X)$ of a *G*-space *X* is the cohomology of the Borel space $EG \times_G X$. In particular, $H^*_G(pt) \cong H^*(BG)$ where BG = EG/G.

There is a variant of equivariant cohomology called **equivariant intersection** cohomology $IH_G^*(X) = \mathbb{H}_G^*(\mathbf{IC}_X)$ which is better suited for singular spaces, but is the same as $H_G^*(X)$ for smooth spaces.

We have a map $EG \times_G X \to BG$, giving us an action of $H^*_G(pt)$ on $IH^*_G(X)$.

Proposition

We have a natural isomorphism $H^*_B(pt) \cong R$, so $H^*_{B\times B}(pt) \cong R \otimes R$. This geometric action makes R_w into an R - R-bimodule. Buck to Socretion

Equivariant cohomology

Let EG be a contractible space on which G acts freely.

Definition

The equivariant cohomology $H^*_G(X) = \mathbb{H}^*_G(\mathbb{C}_X)$ of a *G*-space *X* is the cohomology of the Borel space $EG \times_G X$. In particular, $H^*_G(pt) \cong H^*(BG)$ where BG = EG/G.

There is a variant of equivariant cohomology called **equivariant intersection** cohomology $IH_G^*(X) = \mathbb{H}_G^*(\mathbf{IC}_X)$ which is better suited for singular spaces, but is the same as $H_G^*(X)$ for smooth spaces.

We have a map $EG \times_G X \to BG$, giving us an action of $H^*_G(pt)$ on $IH^*_G(X)$.

Proposition

We have a natural isomorphism $H_B^*(pt) \cong R$, so $H_{B\times B}^*(pt) \cong R \otimes R$. This geometric action makes R_w into an R - R-bimodule. • Back to Soergel-land.

Ben Webster (IAS/MIT)