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Soergel bimodules Algebra

Soergel bimodules

Let R = C[x1, . . . , xn]/(x1 + · · ·+ xn), and si be the map permuting xi and
xi+1 and let G = SL(n, C).

Like so many objects in mathematics, Soergel bimodules have a number of
definitions:

1 One which explains why anyone ever cared:

Definition

A Soergel bimodule is the image of a projective object in category Õ under
Soergel’s “combinatoric” functor V.

2 One which is hands-on but totally unilluminating:
3 One which involves disgusting levels of machinery, but which ultimately

is the best for working with:
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Let R = C[x1, . . . , xn]/(x1 + · · ·+ xn), and si be the map permuting xi and
xi+1 and let G = SL(n, C).

Like so many objects in mathematics, Soergel bimodules have a number of
definitions:

1 One which explains why anyone ever cared: projectives in Õ
2 One which is hands-on but totally unilluminating: tensor products
3 One which involves disgusting levels of machinery, but which ultimately

is the best for working with:

Definition

A Soergel bimodule is the hypercohomology of a semi-simple
B× B-equivariant perverse sheaf on G.
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Soergel bimodules Algebra

Soergel bimodules

Let R = C[x1, . . . , xn]/(x1 + · · ·+ xn), and si be the map permuting xi and
xi+1 and let G = SL(n, C).

Like so many objects in mathematics, Soergel bimodules have a number of
definitions:

1 One which explains why anyone ever cared: projectives in Õ
2 One which is hands-on but totally unilluminating: tensor products
3 One which involves disgusting levels of machinery, but which ultimately

is the best for working with: perverse sheaves

While intimidating at first, a multiplicity of definitions is, in fact, a strength
rather than a weakness, allowing us to our problems translate back and forth
at will.
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Soergel bimodules Algebra

Soergel bimodules for n = 2

When n = 2, then
R = C[x1, x2]/(x1 + x2) ∼= C[y]

with the action of s1 sending y 7→ −y. Thus, Rs1 = C[y2] and

R1 ∼= R⊗Rs1 R ∼= C[y⊗ 1, 1⊗ y] · r/(y2 ⊗ 1− 1⊗ y2)

Proposition

The elements r and (1⊗ y− y⊗ 1) · r generate R1 ⊗R R1 as an R-bimodule,
and generate two summands, so R1 ⊗R R1 ∼= R1 ⊕ R1{2}.

Corollary

Every indecomposable Soergel bimodule for n = 2 is isomorphic to R or R1.
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Soergel bimodules Algebra

Soergel bimodules for n = 3

When n = 3, similar calculations show

Proposition

Every indecomposable Soergel bimodule for n = 2 is isomorphic to one of
R, R1, R2, R1 ⊗R R2, R2 ⊗R R1 or R⊗RS3 R.

Anyone used to playing with SL(3) will probably note that we have an
obvious bijection from S3 to the set of indecomposable Soergel bimodules:

1 ↔ R (12) ↔ R1 (23) ↔ R2

(123) ↔ R2 ⊗R R1 (132) ↔ R1 ⊗R R2 (13) ↔ R⊗RS3 R
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Soergel bimodules Geometry

Indecomposable Soergel bimodules

Question

In general, is the set of indecomposable Soergel bimodules in bijection with
Sn?

Definition 2 is perfectly useless at answering this sort of question. But from
the perspectives of Definitions 1 or 3, it borders on obvious:

Proposition (Soergel)

Every indecomposable Soergel bimodule is of the form

Rw = IH∗
B×B(BwB) = H∗

B×B(IC(BwB)), What?

for w ∈ Sn (and these are pairwise not isomorphic).

Let Gw = BwB.
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Soergel bimodules Geometry

Bott-Samelson Soergel bimodules

Since they appear in the definition of Khovanov-Rozansky homology, we will
also be interested in the Bott-Samelson bimodules

Ri ∼= R⊗Rsi1· · · ⊗Rsim R ∼= Rsi1
⊗R · · · ⊗R Rsim

In the formalism that Rasmussen and Rozansky have used, this is the
bimodule corresponding to a singular braid diagram.

If i′ = {i1, . . . , îk, . . . , im}, then the modules Ri and Ri′ have natural maps
πk : Ri{1} → Ri′ and ρk : Ri′{1} → Ri.

All differentials in the Rouquier complex are built from these natural maps.
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Soergel bimodules Geometry

Bott-Samelson spaces

Let Pi the parabolic preserving the standard flag minus its i-dimensional
subspace, and let

Gi ∼= Pi1 ×B Pi2 ×B · · · ×B Pim .

This space is smooth, and has a B× B-action by left and right multiplication.

Proposition

For all i = (i1, . . . , im), we have Ri ∼= H∗
B×B(Gi).

We have a natural inclusion Gi′ ⊂ Gi, and the maps ρk, πk are simply
pushforward and pullback in cohomology.
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Hochschild homology

Hochschild homology

Hochschild homology also naturally appears in the construction of KR
homology. It is the derived functor of HH0(M) = M/[R, M] where as usual

[R, M] = R · {r · m− m · r|r ∈ R, m ∈ M} · R ⊂ M.

Definition

For any projective resolution of M,

P• = · · · −→ P1 −→ P0 −→ 0

HH∗(M) is the homology of the complex HH0(P•).

Note that HH∗(Rw) has the obvious “Hochschild” grading (which is
independent of any grading on R) and another “polynomial” grading which
arises from using a graded projective resolution of Rw.
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Hochschild homology

Hochschild homology as extension of scalars

Consider an R− R bimodule M as an R⊗ R module. Note that the R-module
M/[R, M] can be rewritten as the extension of scalars

M/[R, M] ∼= M ⊗R⊗R R

By the standard yoga of homological algebra, Hochschild homology can be
reinterpreted as a derived extension of scalars.

HH∗(M) ∼= M
L
⊗R⊗R R

Hochschild homology can thus be interpreted geometrically using Bernstein
and Lunts’s equivalence between the equivariant derived category DT(pt) with
dg-modules over H∗

T(pt) ∼= R.
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Hochschild homology

The geometry of Hochschild homology

While the general story has some surprising subtleties, we get a rather simple
answer for Soergel bimodules.

Proposition (W.-Williamson)

HH∗(Rw) ∼= IH∗
B(Gw) ∼= IH∗

T(Gw) HH∗(Ri) ∼= H∗
B(Gi) ∼= H∗

T(Gi)

where B, T acts on Gw, Gi by conjugation. This isomorphism is “functorial”,
i.e. for any map ϕ of B× B-sheaves, we have

HH∗(H∗
B×B(ϕ)) = H∗

B(ϕ)

and takes the natural grading on cohomology to the “polynomial” grading on
HH∗ minus the “Hochschild” grading.

Keep in mind that if Gw is smooth, then IH∗
B(Gw) ∼= H∗

B(Gw).
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Equivariant cohomology Equivariant formality

Equivariant formality

Equivariant cohomology is easiest to understand in the presence of
equivariant formality.

Definition

We say a T-space X is equivariantly formal if one of the following equivalent
conditions holds

1 H∗
T(X) is free as a module over R.

2 H∗
T(X) ∼= R⊗C H∗(X).

3 dimC H∗(XT) = dimC H∗(X).

4 dimC H∗(XT) ≥ dimC H∗(X).

Theorem

If X is equivariantly formal, then the pullback map H∗
T(X) → H∗

T(XT) is
injective and is an isomorphism after tensoring with Q = (R×)−1R.
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Equivariant cohomology Equivariant formality

Equivariant formality of Gi

Theorem (Rasmussen, W.-Williamson)

The T-spaces Gi equivariantly formal with respect to the conjugation T-action
for all i. Equivalently, the sheaves IC(Gw) are equivariantly formal for all w.

Proof: Rasmussen proved algebraically that HH∗(Ri) is free. By definition 1,
this implies equivariant formality.

Corollary

For all w, we have HH∗(Ri) ∼= R⊗ H∗(Gi).

Applying the Hirsch lemma to the fibration Gi → Gi/B, and taking the Euler
characteristic of the resulting complex shows Rasmussen’s results
indentifying a specialization of the Hilbert series of HH∗(Ri) with the Hilbert
series of H∗(Gi/B).
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Equivariant cohomology Equivariant formality

Gradings

Since Gi is smooth and equivariantly formal, we can separate the Hochschild
and polynomial gradings.

Recall that by the Künneth theorem, H∗
T(GT

i ) ∼= R⊗C H∗(Gi), so we can write
the usual grading as a sum of “equivariant” and “topological” gradings.

By the equivariant formality, the pullback map H∗
T(Gi) → H∗

T(GT
i ) is

injective. Using the above splitting, we can give H∗
T(Gi) a similar bigrading.

Proposition

The isomorphism H∗
T(Gi) ∼= HH∗(Ri) takes the “topological” to the

“Hochschild” grading and the “equivariant” to the “polynomial” minus
twice the “Hochschild.”
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Equivariant cohomology Equivariant formality

The Hochschild homology of smooth Soergel bimodules

Also, we can use this theorem to describe the Hochschild homology of
smooth Soergel bimodules. Assume Gw is smooth.

Proposition (W.-Williamson)

We have an isomorphism

HH∗(Rw) ∼= R⊗C H∗(Gw) ∼= R⊗C ∧•(γ1, . . . , γn−1)

where the # of indices i with deg(γi) = (2m, 1) is the number of positive roots
α with w(α) negative with 〈α, ρ〉 = m− 1 minus the number with 〈α, ρ〉 = m.

It is worth noting that w ∈ Sn with Gw smooth are characterized
combinatorially by pattern avoidance, and as the varieties defined by
non-crossing inclusions.
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Equivariant cohomology Bott-Samelsons

The structure of Gi

Of course, the Holy Grail of this business is really properly understanding
H∗

T(Gi). Since this space is equivariantly formal, understanding H∗(Gi) and
H∗(GT

i ) would be a good start.

Proposition

The fixed points of the conjugation T action on Ki is the subset

GT
i =

⊔
εi∈{0,1};sε1

1 ···sεm
m =e

T · (sε1
1 , . . . , sεm

m )

So H∗(KT
i ) is just a number of copies of H∗(T).

Question

What is H∗(Gi)? We know that dimC H∗(Gi) = dimC H∗(GT
i ) and not much

else.
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Equivariant cohomology Bott-Samelsons

The pullback morphism H∗
T(Gi) → H∗

T(GT
i )

From geometry, we get a map

πs : Ri ∼= H∗
T×T(Gi) → H∗

T×T(T · (sε1
1 , . . . , sεm

m )) ∼= R

for each sequence s, such that sε1
1 · · · sεm

m = e.

This can be defined algebraically by πi1,ε1 ⊗ · · · ⊗ πim,εm where
πij,εj : Ri → R(sε

i ) (here R(sε
i ) is R with the right action twisted by sε

i ) is the
map πi,ε(a⊗ b) = a(bsε

i ).

By equivariant formality, the map HH∗(
⊕

s πs) is injective and an
isomorphism after tensoring with the fraction field Q.
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Equivariant cohomology Bott-Samelsons

What’s left

Summary: our model

gives a uniform description of the Hochschild homology of
indecomposable and Bott-Samelson Soergel bimodules.

allows us to compute certain cases, as well as leverage for understanding
general properties of this homology.

gives a geometric description of the Rouquier complex.

What we hope for is

a better understanding of the Bott-Samelson space.

a better understanding of non-smooth cases.

geometric methods for finding simplifications of the Rouquier complex,
and more generally, applications to knot theory.
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Equivariant cohomology Bott-Samelsons

Equivariant cohomology

Let EG be a contractible space on which G acts freely.

Definition

The equivariant cohomology H∗
G(X) = H∗

G(CX) of a G-space X is the
cohomology of the Borel space EG×G X. In particular, H∗

G(pt) ∼= H∗(BG)
where BG = EG/G.

There is a variant of equivariant cohomology called equivariant intersection
cohomology IH∗

G(X) = H∗
G(ICX) which is better suited for singular spaces,

but is the same as H∗
G(X) for smooth spaces.

We have a map EG×G X → BG, giving us an action of H∗
G(pt) on IH∗

G(X).

Proposition

We have a natural isomorphism H∗
B(pt) ∼= R, so H∗

B×B(pt) ∼= R⊗ R. This
geometric action makes Rw into an R− R-bimodule. Back to Soergel-land.
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