Towards an algebro-geometric proof of the Razumov-Stroganov conjecture?

P. Zinn-Justin
LPTMS, Université Paris-Sud

June 20, 2007

Outline of the talk

(1) Razumov-Stroganov conjecture

- The Temperley-Lieb model of loops
- Some observations
- Fully Packed Loops
- Razumov-Stroganov conjecture
- Inhomogeneous loop model

Quantum Knizhnik-Zamolodchikov equation

- Temperley-Lieb algebra
- qKZ equation
- Relation to loop model

Orbital varieties and rational qKZ

- Orbital varieties of order 2
- Equivariant cohomology and degree from qKZ
- A conjecture on the degeneration of orbital varieties
- Example: three little arches

Outline of the talk

(1) Razumov-Stroganov conjecture

- The Temperley-Lieb model of loops
- Some observations
- Fully Packed Loops
- Razumov-Stroganov conjecture
- Inhomogeneous loop model
(2) Quantum Knizhnik-Zamolodchikov equation
- Temperley-Lieb algebra
- qKZ equation
- Relation to loop model

Orbital varieties and rational qKZ

- Orbital varieties of order 2
- Equivariant cohomology and degree from qKZ
- A conjecture on the degeneration of orbital varieties
- Example: three little arches

Outline of the talk

(1) Razumov-Stroganov conjecture

- The Temperley-Lieb model of loops
- Some observations
- Fully Packed Loops
- Razumov-Stroganov conjecture
- Inhomogeneous loop model
(2) Quantum Knizhnik-Zamolodchikov equation
- Temperley-Lieb algebra
- qKZ equation
- Relation to loop model
(3) Orbital varieties and rational qKZ
- Orbital varieties of order 2
- Equivariant cohomology and degree from qKZ
- A conjecture on the degeneration of orbital varieties
- Example: three little arches

Consider the following probabilistic model. Fill some two-dimensional surface with boundary with plaquettes:
\square with probability p, \int with probability $1-p .(0<p<1)$

Case of the half-infinite cylinder geometry ("periodic boundary conditions")

Consider the following probabilistic model. Fill some two-dimensional surface with boundary with plaquettes:
\square with probability p, Ω with probability $1-p .(0<p<1)$

Case of the half-infinite cylinder geometry ("periodic boundary conditions")

Probability law of the connectivity of the external vertices?

The connectivity of the external vertices can be encoded into a link pattern $=$ a planar pairing of $2 n$ points on a circle.

Example

In size $L=2 n=8$,

$\frac{1}{42}$

$\frac{7}{42}$

Observations (de Gier, Nienhuis '01)

Define

$$
A_{n}=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!(n+2)!\cdots(2 n-1)!}=1,2,7,42,429 \ldots
$$

Form the vector ψ of unnormalized probabilities, so that the smallest components, with patterns of the type

(2) The largest components of ψ correspond to patterns of the type and are equal to A_{n-1}
(Di Francesco, PZJ + Zeilberger '07 or Razumov, Stroganov, PZ '07)
(3) The sum of components of Ψ is $\langle 1 \mid \Psi\rangle=A_{n}$. (Di Francesco, PZJ '04)

Observations (de Gier, Nienhuis '01)

Define

$$
A_{n}=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!(n+2)!\cdots(2 n-1)!}=1,2,7,42,429 \ldots
$$

Form the vector Ψ of unnormalized probabilities, so that the smallest components, with patterns of the type
(1) All components are Ψ are (positive) integers. (Di Francesco, PzJ ${ }^{\circ} \mathrm{o}$)
(2) The largest components of ψ correspond to patterns of the type " and are equal to A_{n-1}
(Di Francesco, PZJ + Zeilberger '07 or Razumov, Stroganov, PZJ '07)
(3) The sum of components of Ψ is $\langle 1 \mid \Psi\rangle=\Lambda_{n}$. (Di Francesco, PZJ (04)

Observations (de Gier, Nienhuis '01)

Define

$$
A_{n}=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!(n+2)!\cdots(2 n-1)!}=1,2,7,42,429 \ldots
$$

Form the vector Ψ of unnormalized probabilities, so that the smallest components, with patterns of the type
(1) All components are Ψ are (positive) integers. (Di Francesco, PZJ '07)
(2) The largest components of Ψ correspond to patterns of the type "are and to A_{n-1}
(Di Francesco, PZJ + Zeilberger '07 or Razumov, Stroganov, PZ '07)
(3) The sum of components of Ψ is $\langle 1 \mid \Psi\rangle=A_{n}$. (Di Francesco, PZJ '04)

Observations (de Gier, Nienhuis '01)

Define

$$
A_{n}=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!(n+2)!\cdots(2 n-1)!}=1,2,7,42,429 \ldots
$$

Form the vector Ψ of unnormalized probabilities, so that the smallest components, with patterns of the type
(1) All components are Ψ are (positive) integers. (Di Francesco, PZJ '07)
(2) The largest components of Ψ correspond to patterns of the type and are equal to A_{n-1}.
(Di Francesco, PZJ + Zeilberger '07 or Razumov, Stroganov, PZJ '07)
(3) The sum of components of Ψ is $\langle 1 \mid \Psi\rangle=A_{n}$. (Di Francesco, PZJ '04)

Observations (de Gier, Nienhuis '01)

Define

$$
A_{n}=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!(n+2)!\cdots(2 n-1)!}=1,2,7,42,429 \ldots
$$

Form the vector Ψ of unnormalized probabilities, so that the smallest components, with patterns of the type
(1) All components are Ψ are (positive) integers. (Di Francesco, PZJ '07)
(2) The largest components of Ψ correspond to patterns of the
 and are equal to A_{n-1}.
(Di Francesco, PZJ + Zeilberger '07 or Razumov, Stroganov, PZJ '07)
(3) The sum of components of Ψ is $\langle 1 \mid \Psi\rangle=A_{n}$. (Di Francesco, PZJ ${ }^{\circ}{ }^{04}$

Observations (de Gier, Nienhuis '01)

Define

$$
A_{n}=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!(n+2)!\cdots(2 n-1)!}=1,2,7,42,429 \ldots
$$

Form the vector Ψ of unnormalized probabilities, so that the smallest components, with patterns of the type
(1) All components are Ψ are (positive) integers. (Di Francesco, PzJ '07)
(2) The largest components of Ψ correspond to patterns of the
 and are equal to A_{n-1}.
(Di Francesco, PZJ + Zeilberger '07 or Razumov, Stroganov, PZJ '07)
(3) The sum of components of Ψ is $\langle 1 \mid \Psi\rangle=A_{n}$. (Di Francesco, PZJ ${ }^{044}$

Fully Packed Loops

A Fully Packed Loop configuration (FPL) on a $n \times n$ square grid:

Theorem (Zeilberger '96)

The number of FPLs (a.k.a. ASMs) of size n is A_{n}.

Fully Packed Loops

A Fully Packed Loop configuration (FPL) on a $n \times n$ square grid:

Theorem (Zeilberger '96)

The number of FPLs (a.k.a. ASMs) of size n is A_{n}.

It is natural to group FPLs by connectivity of their endpoints:

$$
\begin{aligned}
& \underbrace{2}_{2}: \frac{\square}{\square}
\end{aligned}
$$

Razumov-Stroganov conjecture

Conjecture (Razumov, Stroganov '01)

Denote by $A(\pi)$ the number of FPLs with connectivity described the link pattern π. This is exactly the (unnormalized) probability of pattern π in the Temperley-Lieb model of loops.

Remark: The RS conjecture implies observations 1 and 3 of de Gier, Nienhuis.

Razumov-Stroganov conjecture

Conjecture (Razumov, Stroganov '01)

Denote by $A(\pi)$ the number of FPLs with connectivity described the link pattern π. This is exactly the (unnormalized) probability of pattern π in the Temperley-Lieb model of loops.

Remark: The RS conjecture implies observations 1 and 3 of de Gier, Nienhuis.

Introduction of inhomogeneities into the loop model

Consider the same probabilistic model but with probabilities p_{i} depending on the column $i=1, \ldots, 2 n$:

$$
\nabla: p_{i}=\frac{q z_{i}-q^{-1} t}{q t-q^{-1} z_{i}} \quad \square: 1-p_{i}=\frac{z_{i}-t}{q t-q^{-1} z_{i}}
$$

with $q=e^{2 i \pi / 3}$.
z_{i} are the spectral parameters.
The vector of unnormalized probabilities $\psi\left(z_{1}, \ldots, z_{2 n}\right)$ is now a polynomial of the z_{i}.

Introduction of inhomogeneities into the loop model

Consider the same probabilistic model but with probabilities p_{i} depending on the column $i=1, \ldots, 2 n$:

$$
\nabla: p_{i}=\frac{q z_{i}-q^{-1} t}{q t-q^{-1} z_{i}} \quad \square: 1-p_{i}=\frac{z_{i}-t}{q t-q^{-1} z_{i}}
$$

with $q=e^{2 i \pi / 3}$.
z_{i} are the spectral parameters.
The vector of unnormalized probabilities $\Psi\left(z_{1}, \ldots, z_{2 n}\right)$ is now a polynomial of the z_{i}.

Temperley-Lieb algebra

The Temperley-Lieb algebra $\operatorname{TL}_{L}(\tau)$ (a quotient of the Hecke algebra) is defined by generators $e_{i}, i=1, \ldots, L-1$, and relations

$$
e_{i}^{2}=\tau e_{i} \quad e_{i} e_{i \pm 1} e_{i}=e_{i} \quad e_{i} e_{j}=e_{j} e_{i} \quad|i-j|>1
$$

Define the action of Temperley-Lieb generators e_{i} on link patterns:
e_{1}

e_{2}

where the weight of a closed loop is τ.

R-matrix

Set $\tau=-q-1 / q$ (here q is generic), and define the R-matrix:

$$
\check{R}_{i}(u)=\frac{\left(q u-q^{-1}\right) I+(u-1) e_{i}}{q-q^{-1} u}
$$

It satisfies the Yang-Baxter equation:

$$
\check{R}_{i}(u) \check{R}_{i+1}(u v) \check{R}_{i}(v)=\check{R}_{i+1}(v) \check{R}_{i}(u v) \check{R}_{i+1}(u)
$$

and the unitarity equation:

$$
\check{R}_{i}(u) \check{R}_{i}(1 / u)=1
$$

R-matrix

Set $\tau=-q-1 / q$ (here q is generic), and define the R-matrix:

$$
\check{R}_{i}(u)=\frac{\left(q u-q^{-1}\right) I+(u-1) e_{i}}{q-q^{-1} u}
$$

It satisfies the Yang-Baxter equation:

$$
\check{R}_{i}(u) \check{R}_{i+1}(u v) \check{R}_{i}(v)=\check{R}_{i+1}(v) \check{R}_{i}(u v) \check{R}_{i+1}(u)
$$

and the unitarity equation:

$$
\check{R}_{i}(u) \check{R}_{i}(1 / u)=1
$$

Smirnov's qKZ system

Consider the following system of equations for Ψ, a vector-valued polynomial in $z_{1}, \ldots, z_{L}, q, q^{-1}:(i=1, \ldots, L-1)$

$$
\begin{align*}
\check{R}_{i}\left(z_{i+1} / z_{i}\right) \Psi\left(z_{1}, \ldots, z_{L}\right) & =\Psi\left(z_{1}, \ldots, z_{i+1}, z_{i}, \ldots, z_{L}\right) \tag{1}\\
\sigma^{-1} \Psi\left(z_{1}, \ldots, z_{L}\right) & =c \Psi\left(z_{2}, \ldots, z_{L}, s z_{1}\right) \tag{2}
\end{align*}
$$

where σ rotates link patterns:

Level 1 Polynomial solution of $q K Z$

Fact

In size $L=2 n$, for $s=q^{6}$ (level 1), there exists a polynomial solution of degree $n(n-1)$, unique up to normalization.

Example ($L=2 n=4$)

Level 1 Polynomial solution of qKZ

Fact

In size $L=2 n$, for $s=q^{6}$ (level 1), there exists a polynomial solution of degree $n(n-1)$, unique up to normalization.

Example $(L=2 n=4)$

$q K Z$ equation à la Frenkel-Reshetikhin

The actual $q K Z$ equation is a consequence of (1) and (2):

$$
\Psi\left(z_{1}, \ldots, s z_{i}, \ldots, z_{L}\right)=S_{i}\left(z_{1}, \ldots, z_{2 n}\right) \Psi\left(z_{1}, \ldots, z_{i}, \ldots, z_{L}\right)
$$

$(i=1, \ldots, L-1)$ where

$$
S_{i}\left(z_{1}, \ldots, z_{2 n}\right)=
$$

Remark: $q K Z$ is a system of compatible difference equations, in the
same way that KZ is a system of compatible differential equations.

$q K Z$ equation à la Frenkel-Reshetikhin

The actual $q K Z$ equation is a consequence of (1) and (2):

$$
\Psi\left(z_{1}, \ldots, s z_{i}, \ldots, z_{L}\right)=S_{i}\left(z_{1}, \ldots, z_{2 n}\right) \Psi\left(z_{1}, \ldots, z_{i}, \ldots, z_{L}\right)
$$

$(i=1, \ldots, L-1)$ where

$$
S_{i}\left(z_{1}, \ldots, z_{2 n}\right)=
$$

Remark: $q \mathrm{KZ}$ is a system of compatible difference equations, in the
same way that KZ is a system of compatible differential equations.

Special point $q^{3}=1$

Assume $q=e^{ \pm 2 i \pi / 3}$. Then $s=1$ (rotational invariance is restored) and one can show that ψ is the vector of (unnormalized) probabilities of the inhomogeneous loop model. The homogeneous case is recovered when $z_{i}=1$.

Homogeneous limit for generic q

Remark: Keeping q generic, one can consider the homogeneous limit $z_{i}=1$.

Example $(L=2 n=4)$

where $\tau=-q-q^{-1}$
In general, one observes that the components are always
polynomials of τ

Homogeneous limit for generic q

Remark: Keeping q generic, one can consider the homogeneous limit $z_{i}=1$.

Example $(L=2 n=4)$

where $\tau=-q-q^{-1}$.
In general, one observes that the components are always polynomials of τ.

Orbital varieties of order 2

In general, orbital varieties are irreducible components of the intersection of [the closure of] a nilpotent orbit with a Borel subalgebra.
Here we are working with $g /(L)$, and the closure of the nilpotent orbit consists of matrices that square to zero.

$$
\mathcal{O}=\left\{M \text { upper triangular } L \times L: M^{2}=0\right\}
$$

Fact

These orbital varieties are naturally indexed by link patterns of size L

Orbital varieties of order 2

In general, orbital varieties are irreducible components of the intersection of [the closure of] a nilpotent orbit with a Borel subalgebra.
Here we are working with $g l(L)$, and the closure of the nilpotent orbit consists of matrices that square to zero.

$$
\mathcal{O}=\left\{M \text { upper triangular } L \times L: M^{2}=0\right\}
$$

Fact

These orbital varieties are naturally indexed by link patterns of size L.

$$
\mathcal{O}=\bigcup \mathcal{O}_{\pi} \quad \mathcal{O}_{\pi}=\overline{B \cdot \pi_{<}}
$$

Example ($L=2 n=4$)

Two components:

Relation to $q K Z$

Theorem (Di Francesco, PZJ; Knutson, PZJ)
 At $q=-1$ i.e. $\tau=2$, the homogeneous components of the solution of $q K Z$ are the degrees of the corresponding orbital varieties.

cf

More generally, the full components of rational $q K Z$ correspond to equivariant cohomology classes of these orbital varieties. (wrt conjugation by diagonal matrices and scaling)

Relation to $q K Z$

Theorem (Di Francesco, PZJ; Knutson, PZJ)

At $q=-1$ i.e. $\tau=2$, the homogeneous components of the solution of $q K Z$ are the degrees of the corresponding orbital varieties.

More generally, the full components of rational qKZ correspond to equivariant cohomology classes of these orbital varieties. (wrt conjugation by diagonal matrices and scaling)

A conjecture that would imply RS

Conjecture (PZJ)

There exists a [Gröbner] [torus-equivariant] degeneration of each orbital variety \mathcal{O}_{π} into a union of complete intersections with only linear and quadratic equations [toric varieties] which are naturally indexed by Fully Packed Loops with connectivity π.

becomes a special case of

α : FPL with connectivity π

A conjecture that would imply RS

Conjecture (PZJ)

There exists a [Gröbner] [torus-equivariant] degeneration of each orbital variety \mathcal{O}_{π} into a union of complete intersections with only linear and quadratic equations [toric varieties] which are naturally indexed by Fully Packed Loops with connectivity π.

$$
\operatorname{deg} \mathcal{O}_{\pi}=\quad \sum \quad 2^{n_{\alpha}}
$$

α : FPL with connectivity π
becomes a special case of

$$
\left.\Psi_{\pi}\right|_{\text {homogeneous }}=\quad \sum \quad \tau^{n_{\alpha}}
$$

α : FPL with connectivity π

FPLs for three sets of nested arches

Theorem (Di Francesco, PZJ, Zuber '04)

FPLs with connectivity π are in one-to-one correspondence with plane partitions of size $a \times b \times c$.

Orbital varieties for three sets of nested arches

Fact

The orbital variety corresponding to π is given by $X Y=0$, $X(a+b) \times(b+c), Y(b+c) \times(c+a)$ matrices. [quiver variety]

$$
\mathcal{O}_{\pi}=\left\{\begin{array}{ccc}
a+b & b+c & c+a \\
a+b \\
b+c \\
c+a
\end{array}\left(\begin{array}{ccc}
0 & X & \star \\
& 0 & Y \\
& & 0
\end{array}\right) \quad X Y=0\right\}
$$

actually, up to some lower dimensional stuff. . .

The degeneration

For each equation defining \mathcal{O}_{π}, inside the sum $\sum_{j} x_{i j} y_{j k}$ keep only the terms of the form $j=i+k-a-1$ or $j=i+k-a$. There are either one or two such terms.

When only one term is left, the equation $x_{i j} y_{j k}=0$ leads to a decomposition into two pieces: $x_{i j}=0$ or $y_{j k}=0$. This itself can further simplify some remaining two-term equations, etc.
\Rightarrow at the end of the day we have a number of algebraic varieties given by linear equations of the form $x_{i j}=0, y_{j k}=0$, and the remaining quadratic equations $x_{i j} y_{j k}+x_{i j+1} y_{j+1 k}=0$.

The degeneration

For each equation defining \mathcal{O}_{π}, inside the sum $\sum_{j} x_{i j} y_{j k}$ keep only the terms of the form $j=i+k-a-1$ or $j=i+k-a$. There are either one or two such terms.

When only one term is left, the equation $x_{i j} y_{j k}=0$ leads to a decomposition into two pieces: $x_{i j}=0$ or $y_{j k}=0$. This itself can further simplify some remaining two-term equations, etc.
\Rightarrow at the end of the day we have a number of algebraic varieties given by linear equations of the form $x_{i j}=0, y_{j k}=0$, and the remaining quadratic equations $x_{i j} y_{j k}+x_{i j+1} y_{j+1 k}=0$

The degeneration

For each equation defining \mathcal{O}_{π}, inside the sum $\sum_{j} x_{i j} y_{j k}$ keep only the terms of the form $j=i+k-a-1$ or $j=i+k-a$. There are either one or two such terms.

When only one term is left, the equation $x_{i j} y_{j k}=0$ leads to a decomposition into two pieces: $x_{i j}=0$ or $y_{j k}=0$. This itself can further simplify some remaining two-term equations, etc.
\Rightarrow at the end of the day we have a number of algebraic varieties given by linear equations of the form $x_{i j}=0, y_{j k}=0$, and the remaining quadratic equations $x_{i j} y_{j k}+x_{i j+1} y_{j+1 k}=0$.

The decomposition

The original set of equations:
$\sum_{j} x_{i j} y_{j k}=0$, $i=1, \ldots, a+b, j=1, \ldots, a+c$

The cut-off corners correspond to equations that become trivial after degeneration.

Each $>$ corresponds to the quadratic equations left in the end. whereas and \square correspond to the two types of linear

The decomposition

The original set of equations:

$$
\begin{aligned}
& \sum_{j} x_{x_{i j}} y_{j k}=0, \\
& i=1, \ldots, a+b, j=1, \ldots, a+c
\end{aligned}
$$

The cut-off corners correspond to equations that become trivial after degeneration. These trivial (linear) equations cause a "ripple effect" on the remaining quadratic equations:

Each $>$ corresponds to the quadratic equations left in the end, whereas \square and \square correspond to the two types of linear equations. (two choices for the defect lines)

