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Surveys in Differential Geometry XII

Recent Developments on Hamilton’s Ricci flow

Huai-Dong Cao, Bing-Long Chen, Xi-Ping Zhu

Abstract. In 1982, Hamilton [41] introduced the Ricci flow
to study compact three-manifolds with positive Ricci curvature.
Through decades of works of many mathematicians, the Ricci
flow has been widely used to study the topology, geometry and
complex structure of manifolds. In particular, Hamilton’s funda-
mental works (cf. [12]) in the past two decades and the recent
breakthroughs of Perelman [80, 81, 82] have made the Ricci flow
one of the most intricate and powerful tools in geometric analy-
sis, and led to the resolutions of the famous Poincaré conjecture
and Thurston’s geometrization conjecture in three-dimensional
topology.

In this survey, we will review the recent developments on the
Ricci flow and give an outline of the Hamilton-Perelman proof of
the Poincaré conjecture, as well as that of a proof of Thurston’s
geometrization conjecture.

1. Analytic Aspect

1.1. Short-time Existence and Uniqueness. Let M be an
n-dimensional manifold without boundary. The Ricci flow

∂tg = − 2Ric

introduced by Hamilton [41] is a degenerate parabolic evolution system on
metrics. In his seminal paper [41], Hamilton used the Nash-Moser implicit
function theorem to prove the following short-time existence and uniqueness
theorem for the Ricci flow on compact manifolds.

Theorem 1.1 (Hamilton [41]). Let (M, gij(x)) be a compact Rieman-
nian manifold. Then there exists a constant T > 0 such that the Ricci flow
∂tg = −2Ric, with gij(x, 0) = gij(x), admits a unique smooth solution gij(x, t)
for all x ∈ M and t ∈ [0, T ).
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The degeneracy of the system is caused by the diffeomorphism invariance
of the equation. By composing the Ricci flow with a family of suitably chosen
diffeomorphisms, one can obtain a strictly parabolic system. This is the De
Turck trick. The resulting system is called Ricci-De Turck flow. By using this
trick, De Turck [32] gave a simpler proof of the above short-time existence
and uniqueness result.

In 1989, Shi [91] generalized the above short-time existence result to
complete noncompact manifolds with bounded curvature.

Theorem 1.2 (Shi [91]). Let (M, gij(x)) be a complete noncompact Rie-
mannian manifold of dimension n with bounded curvature. Then there exists
a constant T > 0 such that the initial value problem⎧⎨⎩

∂

∂t
gij(x, t) = − 2Rij(x, t), on M, t > 0,

gij(x, 0) = gij(x), on M,

admits a smooth solution gij(x, t), t ∈ [0, T ], with bounded curvature.

For the uniqueness of Ricci flow on complete noncompact manifolds,
the situation is a little subtle. It is well known that, without extra growth
conditions on the solutions, the uniqueness for the standard heat equation
does not always hold. For example, even the simplest linear heat equation
on R with zero as initial data has a nontrivial solution which grows faster
than ea|x|2 for any a > 0 whenever t > 0. The bounded curvature condition
for the Ricci flow in some sense resembles the growth assumption ea|x|2 for
the heat equation. Heuristically, it is natural to ask the uniqueness of Ricci
flow in the class of bounded curvature solutions.

Recently, the last two authors proved the following uniqueness
theorem.

Theorem 1.3 (Chen-Zhu [24]). Let (M, gij(x)) be a complete non-
compact Riemannian manifold of dimension n with bounded curvature.
Let gij(x, t) and ḡij(x, t) be two solutions to the Ricci flow on M ×
[0, T ] with gij(x) as the initial data and with bounded curvatures. Then
gij(x, t) = ḡij(x, t) for all (x, t) ∈ M × [0, T ].

We remark that Perelman [81] sketched a different proof of the above
uniqueness result for a special rotationally symmetric initial metric on R3.
The detailed exposition of Perelman’s uniqueness result was given by Lu-
Tian [63].

1.2. Shi’s Local Derivative Estimates. In the course of proving his
short-time existence theorem in the noncompact case, Shi also obtained the
following very useful local derivative estimates.
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Theorem 1.4 (Shi [91]). There exist positive constants θ,
Ck, k = 1, 2, . . . , depending only on the dimension with the following prop-
erty. Suppose that the curvature of a solution to the Ricci flow is bounded

|Rm| ≤A, on Bt(x0, r0) ×
[
0,

θ

A

]
,

where Bt(x0, r0) is compactly contained in the manifold, then we have

|∇kRm(p, t)|2 ≤CkA
2
(

1
r2k

+
1
tk

+ Ak

)
,

on Bt

(
x0,

r0
2

)
, t ∈

[
0, θ

A

]
, for k = 1, 2, . . . .

1.3. Advanced Maximum Principles. Maximum principle is a fun-
damental and powerful tool for studying heat equations. For Ricci flow,
this principle was established by Hamilton [41, 42]. Roughly speaking,
Hamilton’s maximum principle states that if solutions to the correspond-
ing ODE system always persist in some convex set C when they start from
C, then the solutions to the original PDE system will also remain so as
long as they stay in C at t = 0. It turns out many key estimates, such as
the Hamilton-Ivey pinching estimate, the Li-Yau-Hamilton estimate, are all
proved by using this principle.

To introduce Hamilton’s maximum principle, let us start with some basic
set-up. We assume (M, gij(x, t)), t ∈ [0, T ], is a smooth complete solution
to the Ricci flow with bounded curvature. Let V be an abstract vector
bundle over M with a metric hαβ , and connection ∇ = Γα

iβ compatible with
h. Now we may form the Laplace �σ = gij∇i∇jσ which acts on the sections
σ ∈ Γ(V ) of V. Suppose Mαβ(x, t) is a family of bounded symmetric bilinear
forms on V satisfying the equation

(1.1)
∂

∂t
Mαβ = ΔMαβ + ui∇iMαβ + Nαβ ,

where ui(t) is a time-dependent uniform bounded vector field on the
manifold M , and Nαβ = P(Mαβ , hαβ) is a polynomial in Mαβ formed by
contracting products of Mαβ with itself using the metric h = {hαβ}. In [41],
Hamilton established the following weak maximum principle: Let Mαβ be a
bounded solution to (1.1) and suppose Nαβ satisfies the condition that

Nαβvαvβ ≥ 0 whenever Mαβvβ = 0,

for 0 ≤ t ≤ T. If Mαβ ≥ 0 at t = 0, then it remains so for 0 ≤ t ≤ T .
Hamilton [42] also established a strong maximum principle for solutions

to equation (1.1): Let Mαβ be a bounded solution to (1.1) with ui = 0, and
Nαβ satisfies

Nαβ ≥ 0
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whenever Mαβ ≥ 0. Suppose Mαβ ≥ 0 at t = 0. Then there exists an interval
0 < t < δ on which the rank of Mαβ is constant and the null space of Mαβ

is invariant under parallel translation and invariant in time and also lies in
the null space of Nαβ.

The evolution equation of the curvature operator Mαβ of the Ricci flow
satisfies

(1.2)
∂Mαβ

∂t
= ΔMαβ + M2

αβ + M#
αβ

where M#
αβ = Cξγ

α Cηθ
β MξηMγθ and Cβγ

α = 〈[φβ, φγ ], φα〉 are Lie structural
constants in a standard basis of the Lie algebra consisting of two-forms.
Choosing an orthonormal frame such that Mαβ is diagonal with eigenvalues
λ1 ≤λ2 ≤ · · · , then

M2
11 + M#

11 = λ2
1 +

∑
ξ,η ≥ 2

(Cξη
1 )2λξλη.

So Nαβ = M2
αβ+M#

αβ satisfies the assumption in Hamilton’s strong maximum
principle. Note also that if Mαα = 0 for α ≤ k, and Mαα > 0 for α > k, then
the condition M#

αα = 0 for α ≤ k implies

Cξγ
α = < φα, [φξ, φγ ] > = 0, if α ≤ k and ξ, γ > k.

This says that the image of Mαβ is a Lie subalgebra. So Hamilton’s strong
maximum principle implies

Theorem 1.5 (Hamilton [42]). Suppose the curvature operator Mαβ of
the initial metric is nonnegative. Then, under the Ricci flow, for some inter-
val 0 < t < δ the image of Mαβ is a Lie subalgebra of so(n) which has constant
rank and is invariant under parallel translation and invariant in time.

This implies that under the Ricci flow, any compact manifold with
nonnegative curvature operator which admits no strictly positive curvature
operator has special holonomy group. This theorem may lead to complete
topological classification of compact manifolds with nonnegative curvature
operators.

Note that the nonnegative curvature operators form a convex cone. For
general convex set, Hamilton [42] developed an advanced maximum principle
as follows.

Let V → M be a vector bundle with a fixed bundle metric hab and

∇t : Γ(V ) → Γ(V ⊗ T ∗M), t ∈ [0, T ]

be a smooth family of time-dependent connection compatible with hab. We
may form the Laplacian

Δtσ = gij(x, t)(∇t)i(∇t)jσ,

for σ ∈ Γ(V ).
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Let N : V × [0, T ] → V be a fiber preserving map, i.e., N(x, σ, t) is
a time-dependent vector field defined on the bundle V and tangent to the
fibers. Let K be a closed subset of V satisfying

(H1) K is invariant under parallel translation defined by the connection
∇t for each t ∈ [0, T ];

(H2) the set Kx
Δ= Vx ∩ K is closed and convex in each fiber Vx.

Consider the following heat type equation

(1.3)
∂

∂t
σ(x, t) = Δtσ(x, t) + ui(∇t)iσ(x, t) + N(x, σ(x, t), t)

where ui = ui(t) is a time-dependent vector field on M which is uniformly
bounded on M × [0, T ], and N(x, σ, t) is continuous in x, t and satisfies

|N(x, σ1, t) − N(x, σ2, t)| ≤CB|σ1 − σ2|

for all x ∈ M , t ∈ [0, T ] and |σ1| ≤B, |σ2| ≤B, where CB is a positive
constant depending only on B. We will also consider the corresponding ODE
system

(1.4)
dσx

dt
= N(x, σx, t)

for σx = σx(t) in each fiber Vx. Hamilton’s advanced maximum principle is
the following:

Theorem 1.6 (Hamilton [42]). Let K be a closed subset of V satisfying
(H1) and (H2). Suppose that for any x ∈ M and any initial time t0 ∈ [0, T ),
and any solution σx(t) of the ODE (1.4) which starts in Kx at t0, the solution
σx(t) will remain in Kx for all later times. Then for any initial time t0 ∈
[0, T ) the solution σ(x, t) of the PDE (1.3) will remain in K for all later
times if σ(x, t) starts in K at time t0 and the solution σ(x, t) is uniformly
bounded with respect to the bundle metric hab on M × [t0, T ].

1.4. Hamilton-Ivey Pinching Estimate. The advanced maximum
principle has several significant applications in Ricci flow. One of them is
the following Hamilton-Ivey pinching estimate in dimension three.

Theorem 1.7 ([47, 52, 49]). Suppose we have a solution to the Ricci
flow on a three-manifold which is complete with bounded curvature for each
t ≥ 0. Assume at t = 0 the eigenvalues λ ≥μ≥ ν of the curvature operator
at each point is bounded below by ν ≥ − 1 and the scalar curvature at each
point is bounded below by R = (λ + μ + ν) ≥ − 1. Then at all points and all
times t ≥ 0 we have the pinching estimate

(1.5) R ≥ (−ν)[log(−ν) + log(1 + t) − 3]

whenever ν < 0.
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This pinching estimate roughly says that if a solution to the Ricci flow
on a three-manifold becomes singular at a time T , then the most negative
sectional curvature will be small compared to the most positive sectional
curvature. Thus after rescaling around the singularity, one will obtain a non-
negatively curved limit. This fact will play a crucial role in the classification
of singularities of the Ricci flow on three-dimensional manifolds.

1.5. Li-Yau-Hamilton inequalities. The Harnack inequality, com-
paring values of a positive solution at different points in space-time, is a very
useful property of parabolic equations. In their seminal paper [61], Li-Yau
studied the heat equation and found a fundamental important inequality for
the gradient of positive solutions. Integrating this inequality along suitable
paths, they obtained the usual Harnack inequality.

In 1993, Hamilton [44] discovered a highly nontrivial matrix version of
Li-Yau type inequality for the Ricci flow on complete manifolds with positive
curvature operator. This inequality is called the Li-Yau-Hamilton inequality.
We now describe these inequalities in detail.

Let us begin with the original Li-Yau inequality for the heat equation

(1.6)
(

∂

∂t
− �

)
u = 0.

Theorem 1.8 (Li-Yau [61]). Let (M, gij) be an n-dimensional complete
Riemannian manifold with nonnegative Ricci curvature. Let u(x, t) be any
positive solution to the heat equation (1.6) for t ∈ [0,∞). Then we have

(1.7)
∂u

∂t
− |∇u|2

u
+

n

2t
u ≥ 0 on M × (0,∞).

The proof is a computation of (∂t − �)
(

∂
∂t log u − |∇ log u|2

)
and an

application of the maximum principle.
Next recall that under the Ricci flow on a Riemann surface the scalar

curvature satisfies the following heat type equation(
∂

∂t
− �

)
R = R2.

By the maximum principle, the positivity of the curvature is preserved by
the Ricci flow. Hamilton considered the quantity Q= ∂

∂t log R − |∇ log R|2
and computed

∂

∂t

(
Q +

1
t

)
≥ �

(
Q +

1
t

)
+ 2∇ log R · ∇

(
Q +

1
t

)
+

(
Q − 1

t

) (
Q +

1
t

)
.

From the maximum principle, it follows

Theorem 1.9 (Hamilton [43]). Let gij(x, t) be a complete solution to
the Ricci flow with bounded curvature on a surface M . Assume the scalar
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curvature of the initial metric is positive. Then

∂R

∂t
− |∇R|2

R
+

R

t
≥ 0.

For higher dimensions, the curvature operator is a matrix and satisfies a
quite complicated evolution equation. Apparently, the first important thing
is to find out the correct expression of the quantity we want to estimate.
To this end, Hamilton observed a very useful fact: the Li-Yau inequality

becomes an equality on the heat kernel h(x, t) = (4πt)− n
2 e− |x|

4t

2

on Rn which
can be considered as an “expanding soliton.” In fact, the Li-Yau inequality
is equivalent to the nonnegativity of the following quadratic form:

(1.8)
∂u

∂t
+ 2〈∇u, V 〉 + u|V |2 +

n

2t
u ≥ 0.

Substituting the optimal vector field V = − ∇u
u , we recover (1.7). To illus-

trate the idea of forming the quantity (1.8), let us check the heat kernel

u(x, t) = (4πt)− n
2 e− |x|

4t

2

. Differentiating the function u, we get

(1.9) ∇ju + uVj = 0

where Vj = xj

2t . Differentiating (1.9) again, we have

(1.10) ∇i∇ju + ∇iuVj +
u

2t
δij = 0.

To make the expression in (1.10) symmetric in i, j, we multiply Vi to (1.9)
and add it to (1.10)

(1.11) ∇i∇ju + ∇iuVj + ∇juVi + uViVj +
u

2t
δij = 0.

Taking the trace in (1.11), we obtain the Li-Yau expression

∂u

∂t
+ 2∇u · V + u|V |2 +

n

2t
u = 0

for the heat kernel u. Moreover, the above formulation suggests the matrix
Li-Yau type inequality (1.11) discussed in [50].

Based on similar considerations, Hamilton found the matrix Li-Yau type
expression for Ricci flow which vanishes on expanding gradient Ricci solitons,
and established the following fundamental important inequality.

Theorem 1.10 (Hamilton [44]). Let gij(x, t) be a complete solution with
bounded curvature to the Ricci flow on a manifold Mn for t ∈ (0, T ) and
suppose the curvature operator of gij(x, t) is nonnegative. Then for any one-
form Wa and any two-form Uab we have

MabWaWb + 2PabcUabWc + RabcdUabUcd ≥ 0
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for x ∈ M and t ∈ (0, T ), where

Mab = ΔRab − 1
2
∇a∇bR + 2RacbdRcd − RacRbc +

1
2t

Rab,

Pabc = ∇aRbc − ∇bRac.

Consequently, for any one-form Va, we have

(1.12)
∂R

∂t
+

R

t
+ 2∇aR · Va + 2RabVaVb ≥ 0.

Integrating (1.12) along suitable space-time paths, we obtain

Corollary 1.11 (Hamilton [44]). Under the assumption of Theorem
1.10, for any x1, x2 ∈ M, t1 < t2, we have

(1.13) R(x1, t1) ≤ t2
t1

edt1 (x1,x2)2/2(t2−t1) · R(x2, t2).

We remark that Brendle [5] has extended the Li-Yau-Hamilton inequal-
ity under certain curvature assumption which is weaker than nonnegative
curvature operator but stronger than nonnegative sectional curvature. Also
in the Kähler case, the above Li-Yau-Hamilton inequality has been general-
ized by the first author in [9] under the weaker assumption of nonnegative
bisectional curvature.

Define the Lie bracket on Λ2M ⊕ Λ1M by

[U ⊕ W, V ⊕ X] = [U, V ] ⊕ (U�X − V �W ),

and a degenerate inner product

〈U ⊕ V, W ⊕ X〉 = 〈U, W 〉.

Hamilton [47] observed that the equation satisfied by the quantity Q can
be formally written as

(1.14)
∂

∂t
Q − �Q= Q2 + Q#

under appropriate space-time extensions of U and W . This fascinating
structure led Hamilton to write in his survey [47]:

“The geometry would seem to suggest that the Harnack inequality is some
sort of jet extension of positive curvature operator on some bundle including
translations as well as rotation, this is somehow all related to solitons where
the solution moves by translation. It would be very helpful to have a proper
understanding of this suggestion.”

In [27], Chow and Chu verified this geometric interpretation of Hamilton,
by showing that the Li-Yau-Hamilton quantity is in fact the curvature of a
torsion free connection compatible with a degenerate metric on space-time.
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2. Sphere Theorems and Uniformization Conjectures

2.1. Differential Sphere Theorems. One of the basic problems in
Riemannian geometry is the classification of positively curved manifolds.
The classical (Topological) Sphere Theorem due to Rauch [87], Berger
[4], Klingenberg [57] (cf. [18]) states that a simply connected Riemannian
manifold with 1/4-pinched sectional curvature, in the sense that sectional
curvatures at each point varying in the interval (1, 4], is homeomorphic
to Sn. In 1951, Rauch [87] actually conjectured that such a Riemannian
manifold is diffeomorphic to Sn. This question is known as the Differential
Sphere Theorem. The classical result of differential sphere theorem under
δ-pinched assumption for δ close to 1 (with the best δ = 0.87) was obtained
by Gromoll [36], Calabi, Sugimoto-Shiohama [94], Karcher [55], Ruh [88]
etc (cf. [18]). Note that the well-known theorem of Cheeger-Gromoll-Meyer
(cf. [18]) asserts that any complete noncompact Riemannian manifold of
positive sectional curvature is diffeomorphic to Euclidean space Rn.

The Ricci flow has profound application in proving various differen-
tial sphere theorems. In his 1982 seminal paper [41], Hamilton proved the
following famous sphere theorem.

Theorem 2.1 (Hamilton [41]). A compact 3-manifold with positive Ricci
curvature is diffeomorphic to a spherical space form, i.e., the three-sphere
S3 or a quotient of it by a finite group of fixed point free isometries in the
standard metric.

The idea of the proof is to study the long-time behavior of the Ricci
flow with the given metric of positive Ricci curvature as the initial data
and to obtain spherical space forms as its asymptotic limit. A sketch of
the proof, as shown in [46], can be described as follows. First of all, if
we diagonalize the 3 × 3 curvature operator matrix Mαβ with eigenvalues
λ ≥μ≥ ν, the corresponding ODE system to the evolution equation of the
curvature operator is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
λ = λ2 + μν

d

dt
μ = μ2 + λν

d

dt
ν = ν2 + μλ

It is easy to see λ ≥μ≥ ν is preserved by this system. For any 0< δ ≤ 2, we
compute

d

dt
(μ + ν − δλ) ≥ 0,(2.1)

if μ + ν = δλ. This implies μ + ν ≥ δ
1+δ (λ + μ + ν) is preserved by the above

ODE system. That is equivalent to say, for any 0< δ′ ≤ 1
3 , the Ricci pinching
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Ric≥ δ′Rg is preserved by the Ricci flow. Moreover, considering the convex
set

K = {Mαβ | λ − ν ≤C(λ + μ + ν)1−η},

it is not hard to see

d

dt
log(λ − ν) = λ + ν − μ,

and

d

dt
log(λ + μ + ν) ≥

(
1 +

(
δ

2(1 + δ)

)2
)

(λ + ν − μ)

if μ + ν ≥ δ
1+δ (λ + μ + ν) > 0. So d

dt log λ−ν
(λ+μ+ν)1−η ≤ 0 for some η > 0. Thus

Hamilton’s advanced maximum principle implies∣∣∣∣Ric − R

3
g

∣∣∣∣
R1−η

≤C.

where C is some positive constant. By a blow up argument and using the
second Bianchi identity, we then obtain the gradient estimate with small
coefficient, i.e., for any ε > 0 there is Cε > 0 such that

max
t≤τ

max
x∈M

|∇Rm(x, t)| ≤ ε max
t≤τ

max
x∈M

|Rm(x, t)| 3
2 + Cε.

On the other hand, we know that the solution to the Ricci flow exists
only for a finite time and curvatures become unbounded. Now dilate the
metrics around maximum curvature points so that the maximum curva-
ture becomes one. Combining the gradient estimate, the pinching estimate,
and the Bonnet-Meyers theorem, we know the diameter is bounded for the
rescaled solution. Furthermore, by Klingenberg’s injectivity radius estimate
for 1

4 -pinched manifold and Shi’s derivative estimate, we may take a smooth
convergent subsequence, whose limit is a round sphere S3.

The combination of the above Hamilton’s sphere theorem and
Hamilton’s strong maximum principle gives a complete classification of 3-
dimensional compact manifolds with nonnegative Ricci curvature, see [42].
Actually, if the Ricci curvature can’t be deformed to strictly positive, then
the kernel of Ricci tensor gives rise to a parallel distribution of the tangent
bundle. By De Rham splitting theorem, the universal cover is either flat
or splits. Consequently, a compact three-manifold with nonnegative Ricci
curvature is diffeomorphic to S3 or a quotient of one of the spaces S3 or
S2 × R1 or R3 by a group of fixed point free isometries in the standard
metrics.
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By using his advanced maximum principle in a similar way, Hamilton
[42] also proved a 4-dimensional differentiable sphere theorem:

Theorem 2.2 (Hamilton [42]). A compact 4-manifold with positive
curvature operator is diffeomorphic to the 4-sphere S4 or the real projective
space RP 4.

One of the key steps in the proof is to show the existence of pinching
sets associated to the cone C = {Rm > 0} of positive curvature operators.
Here a pinching set Z is a closed convex subset in the space of curvature
operators that is invariant under the flow of ODE dRm

dt = Rm2 + Rm# (cf.
equation (1.2)) and such that |R̃m| ≤ c|Rm|1−δ, for some constants δ > 0 and
c > 0 and all Rm ∈ Z, where |R̃m| denotes the traceless part of Rm. The lat-
ter condition implies that when |Rm| is large, the rescaled curvature operator
with maximal norm one becomes almost constant curvature. When n = 4,
2-forms can be written as the direct sum of self-dual 2-forms and anti self-
dual forms, hence curvature operators admit block decompositions. Using
this fact and by an elaborate argument, Hamilton [42] was able to construct
pinching sets associated to the cone C = {Rm > 0} such that any compact
subset K of C is contained in some pinching set Z. Once this is established,
it follows (as in the case of n = 3) every initial metric of positive curvature
will evolve under the normalized Ricci flow to a round metric in the limit.

In [42], Hamilton also obtained the following classification theorem for
four-manifolds with nonnegative curvature operator.

Theorem 2.3 (Hamilton [42]). A compact four-manifold with nonneg-
ative curvature operator is diffeomorphic to one of the spaces S4 or CP2 or
S2 ×S2 or a quotient of one of the spaces S4 or CP2 or S3 ×R1 or S2 ×S2 or
S2×R2 or R4 by a group of fixed point free isometries in the standard metrics.

We note that H. Chen [26] extended Theorem 2.2 to 2-positive curvature
operator. Here 2-positive curvature operator means the sum of the least
two eigenvalues of the curvature operator is positive. Later, by using the
Ricci flow, differential sphere theorems for higher dimensions under some
suitable pointwise pinching conditions were obtained by Huisken [51] (see
also Margerin [65, 66] and Nishikawa [79]).

Naturally, one would ask if a compact Riemannian manifold Mn, with
n ≥ 5, of positive curvature operator (or 2-positive curvature operator) is
diffeomorphic to a space form. This was in fact conjectured so by Hamilton
and proved only very recently by Böhm-Wilking [8].

Theorem 2.4 (Böhm-Wilking [8]). A compact Riemannian manifold of
dimension n ≥ 5 with a two-positive curvature operator is diffeomorphic to
a spherical space form.

In [8], Böhm-Wilking developed a powerful new method to construct
closed convex sets, which are invariant under the Ricci flow, in the space of
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curvature operators. They introduced a linear transformation la,b (a, b > 0)
on the space of curvature operators defined by la,b(Rm) = Rm + aRmI +
bRm0 so that it increases the scalar curvature part RmI and the traceless
Ricci part Rm0 of Rm by factors of a and b respectively. A crucial property
they found is that the associated transformation Da,b(Rm) = l−1

a,b((la,bRm)2+
(la,bRm)#)−Rm2 −Rm# is independent of the Weyl curvature part of Rm.
Based on this, they can construct new invariant cones from old ones. By
choosing appropriate constants a′s and b′s, this construction gives rise to
a (continuous) pinching family C(s), s ∈ [0, 1), of invariant closed convex
cones such that C(0) is the cone of 2-nonnegative curvature operators and,
as s → 1, C(s) approaches {cI : c ∈ R+}, the set of constant curvature oper-
ators. From this pinching family C(s), one can then construct a generalized
pinching set F which is a certain special invariant convex set in the space
of curvature operators, so that F contains the initial data and F\C(s) is
compact for every s ∈ [0, 1). Since the curvature operator of the evolving
metric under the Ricci flow has to diverge to infinity in finite time, it must
be contained in every C(s) when the time is large after rescaling. Thus, the
solution to the normalized Ricci flow converges to a round metric in the
limit.

We have seen that the Ricci flow preserves the positive curvature oper-
ator condition in all dimensions and preserves the positive Ricci curvature
condition in dimension 3. On the other hand, in [48] Hamilton also proved
that the positive isotropic curvature (PIC) condition is preserved by the
Ricci flow in dimension 4. We remark that in 1988, by using minimal sur-
face theory, Micallef and Moore [67] were able to prove that any compact
simply connected n-dimensional manifold with positive isotropic curvature
is homeomorphic to the n-sphere Sn, and the condition of positive isotropic
curvature is weaker than both positive curvature operator and 1/4-pinched.
Very recently Brendle-Schoen [6], and independently H. Nguyen [73], proved
that the PIC condition is preserved by the Ricci flow in all dimensions
n ≥ 4.1 More excitingly, Brendle and Scheon [6] showed that when the ini-
tial metric has (pointwise) 1/4-pinched sectional curvature (in fact under
the weaker curvature condition that M × R2 has PIC, see [6]), the Ricci
flow will converge to a spherical space form. As a corollary, they proved the
long-standing Differential Sphere Theorem.

Theorem 2.5 (Brendle-Schoen [6]). Let M be a compact manifold with
(pointwise) 1/4-pinched sectional curvature. Then M is diffeomorphic to Sn

or a quotient of Sn by a group of fixed point free isometries in the standard
metrics.

1See also Andrews-Nguyen [1] for a proof that 1/4-pinched flag curvature is preserved
for n = 4 which has some common features.
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By generalizing the usual strong maximum principle to a powerful ver-
sion, Brendle and Schoen [7] even obtained the following rigidity result,
which extends the well-known rigidity result of Berger (cf. [18]).

Theorem 2.6 (Brendle-Schoen [7]). Let M be a compact manifold
with (pointwise) weakly 1/4-pinched sectional curvature in the sense that
0 < sect(P1) ≤ 4sect(P2) for all two-planes P1, P2 ∈ TpM . If M is not diffeo-
morphic to a spherical space form, then it is isometric to a locally symmetric
space.

2.2. Kähler Manifolds with Nonnegative Holomorphic Bisec-
tional Curvature. The classical uniformization theorem for Riemann
surfaces implies that a complete simply connected Riemann surface with
positive curvature is biholomorphic to either the Riemann sphere or the
complex plane. The classification (in holomorphic category) of positively
curved Kähler manifolds in higher dimensions is one of the most impor-
tant problems in complex differential geometry. Corresponding to positive
sectional curvature condition in Riemannian geometry, one usually consid-
ers the positive holomorphic bisectional curvature in complex differential
geometry.

Let Mn be a complex n-dimensional compact Kähler manifold. The
famous Frankel conjecture states that: if Mn has positive holomorphic bisec-
tional curvature, then it is biholomorphic to the complex projective space
CPn. This was independently proved by Mori [71] and Siu-Yau [100] by
using different methods. After the work of Mori and Siu-Yau, it is natural
to ask the similar question for the semi-positive case. This is often called the
generalized Frankel conjecture. The complex three-dimensional case was first
obtained by Bando [3]. When the curvature operator of Mn is assumed to be
nonnegative, the result was proved by the first author and Chow [11]. The
general case of the generalized Frankel conjecture is proved by Mok [69].

Theorem 2.7 (Mok [69]). Let (Mn, h) be a compact complex
n-dimensional Kähler manifold of nonnegative holomorphic bisectional
curvature and let (M̃n, h̃) be its universal covering space. Then there exists
nonnegative integers k, N1, . . . , Nl, p and irreducible compact Hermitian
symmetric spaces M1, . . . , Mp of rank ≥ 2 such that (M̃n, h̃) is isometrically
biholomorphic to

(Ck, g0) × (CPN1 , θ1) × · · · × (CPNl , θl) × (M1, g1) × · · · × (Mp, gp)

where g0 denotes the Euclidean metric on Ck, g1, . . . , gp are canonical met-
rics on M1, . . . , Mp, and θi, 1 ≤ i≤ l, is a Kähler metric on CPNi carrying
nonnegative holomorphic bisectional curvature.

Mok’s method of proving the generalized Frankel conjecture in [69]
depends on Mori’s theory of rational curves on Fano manifolds, so his proof is
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not completely transcendental. Recently, by using the strong maximum prin-
ciple of Brendle-Schoen in [7], H. L. Gu [39] gave a simpler and completely
transcendental proof of the generalized Frankel conjecture. The above Mok’s
theorem on generalized Frankel conjecture is indeed a factorization theorem
for compact case. Based on the arguments in [39], we now formulate a new
factorization theorem for noncompact cases as follows.

Theorem 2.8. Let (M, h) be a complete noncompact Kähler manifold
with bounded and nonnegative holomorphic bisectional curvature. Then one
of the following holds:

(i) M admits a Kähler metric with bounded and positive bisectional
curvature;

(ii) The universal cover M̂ of M splits holomorphically, isometrically
and nontrivially as

M̂ = Ck × M1 × · · · × Ml1 × N1 × · · · × Nl2

where k, l1, l2 are nonnegative integers, Ck is the complex Euclidean space
with flat metric, Mi, 1 ≤ i≤ l1, are complete (compact or noncompact) Kähler
manifolds with bounded and nonnegative bisectional curvature admitting a
Kähler metric with bounded and positive bisectional curvature, Nj , 1 ≤ j ≤ l2,
are irreducible compact Hermitian symmetric spaces of rank ≥ 2 with the
canonical metrics.

Proof. We evolve the metric h by the Kähler Ricci flow:⎧⎨⎩
∂

∂t
gij̄(x, t) = − Rij̄(x, t),

gij̄(x, 0) = hij̄(x).

Then by Shi’s short-time existence theorem, we know that there is a T > 0
such that the Ricci flow has a smooth solution gij̄(t) with bounded curva-
ture for t ∈ [0, T ). It is well-known (from [69] and [91]) that the solution
gij̄(t) still has nonnegative holomorphic bisectional curvature. By lifting the
solution to the universal cover M̂ of M , then the pull back evolving metric
ĝij̄(t) is a solution to the Ricci flow on M̂ . Clearly we may assume that the
holomorphic bisectional curvature of the solution ĝij̄(t) vanishes somewhere
at each time t ∈ [0, T ); otherwise we will have case (i).

By applying the standard De Rham decomposition theorem, we know
that the universal cover (M̂, ĝij̄(t)), t ∈ [0, δ), can be isometrically and
holomorphically splitted as

(M̂, ĝij̄(t)) = (Ck, ĝ0) × (M̂1, ĝ
1
ij̄(t)) × · · · (M̂p, ĝ

p
ij̄

(t))

for some δ ∈ (0, T ), where each (M̂α, ĝα
ij̄

(t)), 1 ≤α ≤ p, is irreducible and
non-flat, ĝ0 is the standard flat metric.
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Consider each irreducible and non-flat factor (M̂α, ĝα
ij̄

(t)), 1 ≤α ≤ p.

Suppose (M̂α, ĝα
ij̄

(0)) is not locally symmetric. We shall show that

(M̂α, ĝα
ij̄

(t)), t ∈ (0, δ′), has positive holomorphic bisectional curvature
everywhere on (0, δ′) for some 0 < δ′ < δ.

Since the smooth limit of locally symmetric space is also locally sym-
metric, we obtain that there exists δ′ ∈ (0, T ) such that (M̂α, ĝα

ij̄
(t)) is not

locally symmetric for t ∈ (0, δ′). Combining the Kählerity of ĝα
ij̄

(t) and
Berger’s holonomy theorem, we know that the holonomy group Hol(ĝα(t))
of (M̂α, ĝα(t)) is U(nα), where nα = dimC M̂α.

Recall the evolution equation of holomorphic bisectional curvature under
an evolving orthnormal frame {ei} according to Hamilton [42]

∂

∂t
R̂α

īijj̄ = �R̂α
īijj̄ +

∑
p,q

(R̂α
īipq̄R̂

α
qp̄jj̄ − |R̂α

ip̄jq̄|2 + |R̂α
ij̄pq̄|

2).

Let P be the fiber bundle with the fixed metric h and the fiber Px

over x ∈ M̂α consisting of all 2-vectors {X, Y } ⊂ T 1,0
x (M̂α). Now define a

function u on P × (0, δ′) by

u({X, Y }, t) = R̂α(X, X, Y, Y ),

where R̂α denotes the pull-back of the curvature tensor of ĝα
ij̄

(t). For simplic-

ity, we denote R = R̂α. Since (M̂α, ĝα
ij̄

(t)) has nonnegative holomorphic bisec-
tional curvature, we have u ≥ 0. Let N = {({X, Y }, t)|u({X, Y }, t) = 0, X �=
0, Y �= 0} ⊂ P × (0, δ′). We will show in the following that if N is not empty
then it is invariant under the parallel translation.

For fixed ei, consider the Hermitian form Hi(X, Y ) = R(ei, ei, X, Y ) and
let {Ep} be an orthonormal basis associated to eigenvectors of Hi. In these
basis we have∑

p,q

Rīipq̄Rqp̄jj̄ =
∑

p

R(ei, ei, Ep, Ep)R(Ep, Ep, ej , ej),

and ∑
p,q

|Rip̄jq̄|2 =
∑
p,q

|R(ei, Ep, ej , Eq)|2.

Moreover, we claim∑
p,q

Rīipq̄Rqp̄jj̄ −
∑
p,q

|Rip̄jq̄|2 ≥ c1 · min{0, inf
|ξ| = 1,ξ∈V

D2u({ei, ej}, t)(ξ, ξ)}

for some constant c1 > 0, where V denotes the vertical spaces of the fiber
bundle P .
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Indeed, inspired by Mok [69], for any given ε0 > 0 and each fixed q ∈
{1, 2, . . . , n}, we consider the function

G̃q(ε) = (R + ε0R0)(ei + εEq, ei + εEq, ej + ε
∑

p
CpEp, ej + ε

∑
p

CpEp),

where R0 is a curvature operator defined by (R0)ij̄kl̄ = gij̄gkl̄ + gil̄gkj̄ and
Cp are complex constants to be determined later. For simplicity, we denote
R̃ = R + ε0R0, then

G̃q(ε) = R̃(ei + εEq, ei + εEq, ej + ε
∑

p
CpEp, ej + ε

∑
p
CpEp).

Then a direct computation gives

1
2

· d2G̃q(ε)
dε2

∣∣∣∣
ε = 0

= R̃(Eq, Eq, ej , ej) +
∑

p
|Cp|2R̃(ei, ei, Ep, Ep)

+2Re
∑

p
CpR̃(ei, Eq, ei, Ep) + 2Re

∑
p
CpR̃(ei, ei, Ep, Eq).

Writing Cp = xpe
iθp , (p ≥ 1) for some real numbers xp, θp to be determined

later, the above identity becomes:

1
2

· d2G̃q(ε)
dε2

∣∣∣∣
ε = 0

= R̃(Eq, Eq, ej , ej) +
∑

p
|xp|2R̃(ei, ei, Ep, Ep)

+ 2
∑

p
xp·Re(e−iθpR̃(ei, Eq, ej , Ep) + eiθpR̃(ei, ej , Ep, Eq)).

Following Mok [69], by setting Ap = R̃(ei, ej , Ep, Eq), Bp = R̃(ei, Eq, ej , Ep),
we have:

1
2

· d2G̃q(ε)
dε2

∣∣∣∣
ε = 0

= R̃(Eq, Eq, ej , ej) +
∑

p
|xp|2R̃(ei, ei, Ep, Ep)

+
∑

p
xp(e−iθpBp + eiθpBp + eiθpAp + e−iθpAp)

= R̃(Eq, Eq, ej , ej) +
∑

p
|xp|2R̃(ei, ei, Ep, Ep)

+
∑

p
xp · (eiθp(Ap + Bp) + eiθp(Ap + Bp))

By choosing θp such that eiθp(Ap + Bp) is real and positive, the identity
becomes:

1
2

· d2G̃q(ε)
dε2

∣∣∣∣
ε = 0

= R̃(Eq, Eq, ej , ej) +
∑

p
|xp|2R̃(ei, ei, Ep, Ep)

+ 2
∑

p
xp · |Ap + Bp|.
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If we change ei by eiϕei, then Ap = R̃(ei, ej , Ep, Eq) is replaced by eiϕAp,

and Bp = R̃(ei, Eq, ej , Ep) is replaced by e−iϕBp. Then we have:

1
2

· d2F̃q(ε)
dε2

∣∣∣∣
ε = 0

= R̃(Eq, Eq, ej , ej) +
∑

p
|xp|2R̃(ei, ei, Ep, Ep)

+ 2
∑

p
xp · |eiϕAp + e−iϕBp|,

where

F̃q(ε) = R̃

(
eiϕei + εEq, eiϕei + εEq, ej + ε

∑
p
CpEp, ej + ε

∑
p
CpEp

)
.

Since the curvature operators R and R0 have nonnegative and positive
holomorphic bisectional curvature respectively, we know that the opera-
tor R̃ = R0 + ε0R0 has positive holomorphic bisectional curvature. Now by
choosing xp = − |eiϕAp+e−iϕBp|

˜R(ei,ei,Ep,Ep)
, for p ≥ 1, it follows that

1
2π

∫ 2π

0

(
1
2

· d2F̃q(ε)
dε2

∣∣∣∣
ε = 0

)
dϕ = R̃(Eq, Eq, ej , ej) −

∑
p

|Ap|2 + |Bp|2

R̃(ei, ei, Ep, Ep)

and then

R̃(ei, ei, Eq, Eq) · 1
2π

∫ 2π

0

(
1
2

· d2F̃q(ε)
dε2

∣∣∣∣
ε = 0

)
dϕ

= R̃(ei, ei, Eq, Eq)R̃(Eq, Eq, ej , ej)

−
∑

p

|Ap|2 + |Bp|2

R̃(ei, ei, Ep, Ep)
R̃(ei, ei, Eq, Eq).

Note that

F̃q(ε) = R̃(eiϕei + εEq, eiϕei + εEq, ej + ε
∑

p
CpEp, ej + ε

∑
p
CpEp)

= R̃(ei + εe−iϕEq, ei + εe−iϕEq, ej + ε
∑

p
CpEp, ej + ε

∑
p
CpEp).

Interchanging the roles of Eq and Ep, and then taking summation, we have∑
q
2R̃(ei, ei, Eq, Eq)R̃(Eq, Eq, ej , ej)

≥ c1 · min{0, inf
|ξ| = 1,ξ∈V

D2ũ({ei, ej}, t)(ξ, ξ)}

+
∑

p,q

(
|Ap|2 + |Bp|2

) (
R̃(ei, ei, Eq, Eq)
R(ei, ei, Ep, Ei)

+
R̃(ei, ei, Ep, Ep)

R̃(ei, ei, Eq, Eq)

)
≥ c1 · min{0, inf

|ξ| = 1,ξ∈V
D2ũ({ei, ej}, t)(ξ, ξ)} + 2

∑
p,q

|R̃(ei, Eq, ej , Ep)|2,
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where ũ({X, Y }, t) = R̃(X, X, Y, Y ) = R(X, X, Y, Y )+ ε0R0(X, X, Y, Y ) and
c1 is a positive constant which depends on the bound of the curvature R,
but does not depend on ε0.

Hence∑
p R̃(ei, ei, Ep, Ep)R̃(Ep, Ep, ejej) −

∑
p,q |R̃(ei, Ep, ej , Eq)|2

≥ c1 · min{0, inf |ξ| = 1,ξ∈V D2ũ({ei, ej}, t)(ξ, ξ)}.

Since ε0 > 0 is arbitrary, we can let ε0 → 0 and it follows that:∑
p,q

Rīipq̄Rqp̄jj̄ −
∑

p,q
|Rip̄jq̄|2 ≥ c1 ·min{0, inf

|ξ| = 1,ξ∈V
D2u({ei, ej}, t)(ξ, ξ)},

for some constant c1 > 0. Therefore we proved our claim.
By the definition of u and the evolution equation of the holomorphic

bisectional curvature, we know that

∂
∂tu({X, Y }, t) = �u({X, Y }, t) +

∑
p,q R(X, X, ep, eq)R(eq, ep, Y, Y )

−
∑

p,q |R(X, ep, Y, eq)|2 +
∑

p,q |R(X, Y , ep, eq)|2.

Therefore, from the above inequality, we obtain that:

∂u

∂t
≥Lu + c1 · min{0, inf

|ξ| = 1,ξ∈V
D2u(ξ, ξ)},

where L is the horizontal Laplacian on P , V denotes the vertical subspaces.
By Proposition 2 in [7] and note that the curvature is nonnegative and
bounded, we know that the set

N = {({X, Y }, t)|u({X, Y }, t) = 0, X �= 0, Y �= 0} ⊂ P × (0, δ′)

is invariant under parallel transport.
Next, we claim that Rīijj̄ > 0 for all t ∈ (0, δ′). Indeed, suppose not.

Then Rīijj̄ = 0 for some t ∈ (0, δ′). Therefore

({ei, ej}, t) ∈ N.

Combining Rīijj̄ = 0 with the evolution equation of the curvature operator
and the first variation, we can obtain that⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
p,q(Rīipq̄Rqp̄jj̄ − |Rip̄jq̄|2) = 0,

Rij̄pq̄ = 0, ∀p, q,

Rīipj̄ = Rjj̄p̄i = 0, ∀p.
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We define an orthonormal 2-frames {ẽi, ẽj} ⊂ T 1,0
x (M̂α) by

ẽi = sin θ · ei − cos θ · ej ,

ẽj = cos θ · ei + sin θ · ej .

Then
ẽi = sin θ · ei − cos θ · ej ,

ẽj = cos θ · ei + sin θ · ej .

Since N is invariant under parallel transport and (M̂α, ĝα
ij̄

(t)) has holonomy
group U(nα), we obtain that

({ẽi, ẽj}, t) ∈ N,

that is,
R(ẽi, ẽi, ẽj , ẽj) = 0.

On the other hand,

R(ẽi, ẽi, ẽj , ẽj) = sin2 θ cos2 θRīiīi + sin3 θ cos θRīiij̄ + sin3 θ cos θRīijī

+ sin4 θRīijj̄ − sin θ cos3 θRij̄īi − sin2 θ cos2 θRij̄ij̄

− sin2 θ cos2 θRij̄jī − sin3 θ cos θRij̄jj̄ − cos3 θ sin θRjīīi

− sin2 θ cos2 θRjīij̄ − sin2 θ cos2 θRjījī − cos θ sin3 θRjījj̄

+ cos4 θRjj̄īi + cos3 θ sin θRjj̄ij̄ + cos3 θ sin θRjj̄jī

+ cos2 θ sin2 θRjj̄jj̄

= cos2 θ sin2 θ(Rīiīi + Rjj̄jj̄).

So we have Rjj̄jj̄ + Rīiīi = 0, if we choose θ such that cos2 θ sin2 θ �= 0. But
this contradicts with the fact that (M̂α, ĝα

ij̄
(t)) has positive holomorphic

sectional curvature. Hence we proved that Rīijj̄ > 0, for all t ∈ (0, δ′).
This completes the proof of Theorem 2.8. �

We remark that a (rough) factorization theorem, according to whether
the manifold supports a strictly plurisubharmonic function, was obtained
earlier by Ni and Tam [76] without assuming the curvature to be bounded.

Finally, by combining with the resolution of the Frankel conjecture,
our (more precise) factorization Theorem 2.8 can reduce the classification
of complete noncompact Kähler manifolds with bounded and nonnegative
bisectional curvature to the case of strictly positive bisectional curvature. In
the latter case there is a long standing conjecture due to Yau (Problem 34
in [101]):
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Yau’s Conjecture (Yau [101]) A complete noncompact Kähler man-
ifold of positive holomorphic bisectional curvature is biholomorphic to a
complex Euclidean space.

In recent years, there have been many research activities in studying
this conjecture of Yau. The Ricci flow has been found to be a useful tool to
approach it. The following partial affirmative answer, due to Chen-Tang-Zhu
[20] in complex dimension n = 2 and Chau-Tam [16] for all dimensions, was
obtained via the Ricci flow.

Theorem 2.9. Let M be a complete noncompact n-dimensional Kähler
manifold of positive and bounded holomorphic bisectional curvature. Suppose
there exists a positive constant C1 such that for a fixed base point x0, we have

Vol(B(x0, r)) ≥C1r
2n 0 ≤ r < +∞,

then M is biholomorphic to Cn.

We refer the readers to the survey article of A. Chau and L. F. Tam [17]
in this volume for more information on works related to the Kähler-Ricci
flow and Yau’s uniformization conjecture.

3. Perelman’s Noncollapsing Result

In the celebrated work [80], Perelman proved a remarkable (local) non-
collapsing result for the Ricci flow on compact manifolds in all dimensions.
This (local) noncollapsing result had been conjectured by Hamilton in his
survey paper [47] and is crucial in applying Hamilton’s compactness theo-
rem to understand the structure of singularities of the Ricci flow. Below, we
follow Perelman [80] to give two approaches for deriving his noncollapsing
result.

3.1. Perelman’s Conjugate Heat Equation Approach. For the
Ricci flow on a compact manifold, Perelman [80] introduced a new functional

(3.1) W(gij , f, τ) =
∫

M
[τ(R + |∇f |2) + f − n](4πτ)− n

2 e−fdV.

This functional has played a very important role in the Ricci flow; see also
the more recent works by Feldman-Ilmanen-Ni [34], Cao-Hamilton-Ilmanen
[13], Ma [64], Li [60], Zhang [107], Ye [102]–[105], X. Cao [15], Ling [62],
etc.

Perelman proved that the W-functional is monotone in time when the
metric g evolves under the Ricci flow, the function f evolves under the
backward heat equation

∂f

∂τ
= Δf − |∇f |2 + R − n

2τ
,
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and dτ
dt = − 1. This entropy monotonicity can be interpreted as a Li-Yau

type estimate for the conjugate heat equation

(3.2) �u : =
∂u

∂τ
− Δu + Ru = 0,

where τ = T − t, and gij(x, t), 0 ≤ t < T , is a solution to the Ricci flow. Note
that u = (4πτ)− n

2 e−f satisfies the conjugate heat equation if and only if f
satisfies the above backward heat equation.

By considering the shrinking Ricci solitons, one can find the analogous
Li-Yau expression for the conjugate heat equation to be

H = 2Δf − |∇f |2 + R +
f − n

τ
.

(We learned this argument from Hamilton. The details can be found in [14].)
By direct computations, one has

∂H

∂τ
= ΔH − 2∇f · ∇H − 1

τ
H − 2

∣∣∣∣Rij + ∇i∇jf − 1
2τ

gij

∣∣∣∣2 .

Set

(3.3) v = τHu =
(
τ(R + 2Δf − |∇f |2) + f − n

)
u,

then

(3.4)
∂v

∂τ
= Δv − Rv − 2τu

∣∣∣∣Rij + ∇i∇jf − 1
2τ

gij

∣∣∣∣2 .

If u is a fundamental solution to (3.2), one can show limτ→0+ τH ≤ 0 (see
[75]). Then the maximum principle implies Perelman’s Li-Yau type estimate
for the conjugate heat equation:

H ≤ 0

for all τ ∈ (0, T ]. Along any space-time path (γ(τ), τ), τ ∈ [0, τ̄ ] with
γ(0) = p, γ(τ̄) = q, there holds

d

dτ

(
2
√

τf(γ(τ), τ)
)
≤

√
τ(R + |γ̇(τ)|2gij(τ)).

If one defines

(3.5) L(γ) �
∫ τ̄

0

√
τ(R + |γ̇(τ)|2gij(τ))dτ,

and

(3.6) l(q, τ̄) � inf
γ

1
2
√

τ̄
L(γ),
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where the inf is taken over all space curves γ(τ), 0 ≤ τ ≤ τ̄ , joining p and q,
then

f(q, τ̄) ≤ l(q, τ̄).
This leads to a lower estimate for the fundamental solution u of the conjugate
heat equation,

(3.7) u(q, τ̄) ≥ (4πτ̄)− n
2 e−l(q,τ̄).

Now since v happens to be the integrand of the W-functional, by
integrating (3.4), one obtains

(3.8)

d

dt
W(gij(t), f(t), τ(t)) =

∫
M

2τ

∣∣∣∣Rij + ∇i∇jf − 1
2τ

gij

∣∣∣∣2 (4πτ)− n
2 e−fdV ≥ 0.

Let

(3.9) μ(M, g, τ) = inf
{

W (g, f, τ)
∣∣∣∣ ∫

(4πτ)− n
2 e−fdv = 1

}
,

then we have the monotonicity of Perelman’s entropy:

Lemma 3.1 (Perelman [80]). μ(M, g(t), T − t) is nondecreasing along
compact Ricci flow; moreover, the monotonicity is strict unless we are on a
shrinking gradient soliton.

A direct consequence is the following important noncollapsing theorem
of Perelman.

Theorem 3.2 (Perelman [80]). Let gij(x, t), 0 ≤ t ≤T , be a smooth solu-
tion to the Ricci flow on an n-dimensional compact manifold M. Then there
exists a constant κ > 0 depending only on T and the initial metric such that
the following holds: if r0 ≤

√
T and |Rm|(x, t0) ≤ r−2

0 on Bt0(x0, r0), then

volt0(Bt0(x0, r0)) ≥κrn
0 .

Indeed, let ξ be a smooth nonnegative non-increasing function, which is
1 on (−∞, 1

2 ] and 0 on [34 ,∞). Substituting

u = (4πr2
0)

− n
2 e−f =

ξ
(

dt0 (x0,x)
r0

)
∫

Mξ
(

dt0 (x0,x)
r0

)
dvt0

into (3.1), we have

W (gij(t0), f, r2
0) ≤C(n) + log

volt0(Bt0(x0, r0))
rn
0

.
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By Lemma 3.1, we have

W (gij(t0), f, r2
0) ≥μ(M, gij(0), r2

0 + t0).

Note that the right hand side is controlled by the log Sobolev constant of the
initial metric (on the scales ≤

√
2T ). This proves the noncollapsing theorem.

3.2. Perelman’s Reduced Volume Approach. There is another
way to get the noncollapsing result by establishing the comparison geome-
try to the L-length introduced in (3.5). Moreover, this comparison geometric
approach could be adapted to get the noncollapsing for surgical solutions.
We now discuss this approach.

In [80], Perelman introduced the L-length defined in (3.5) as a suitable
renormalized distance function on potentially infinite dimensional space-
time manifold, where the Ricci flow was embedded there. More explicitly,
let ∂gij

∂τ = 2Ric be a solution to the Ricci flow on M with τ = T − t. Consider

M̃ = M × SN × R+

with the following metric

g̃ij = gij ,

g̃αβ = τgαβ ,

g̃oo =
N

2τ
+ R,

g̃iα = g̃io = g̃αo = 0,

where i, j are coordinate indices on M , α, β are coordinate indices on SN

and the coordinate τ on R+ has index o. The metric gαβ on SN has constant
sectional curvature 1

2N . This construction may be viewed as a “regulariza-
tion” of what Chow-Chu did in [27]. Perelman twisted the sign of the time
and coupled the space-time with a solution to the Ricci flow with positive
curvatures on manifolds of very big dimensions. As we mentioned before,
Chu and Chow [27] found a geometric interpretation of Li-Yau-Hamilton
inequality. So the following proposition of Perelman is not surprising.

Proposition 3.3. The components of the curvature tensor of the met-
ric g̃ coincide (module N−1) with the components of the Li-Yau-Hamilton
quadratic.

The key observation due to Perelman is the following

Proposition 3.4 (Perelman [80]). The Ricci curvature of the metric g̃

is flat (module N−1), i.e. |R̃ic|g̃ = O
( 1

N

)
.
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Recall that we have Bishop-Gromov volume comparison theorem on
manifolds with Ricci curvature bounded from below. The above proposition
3.4 motivated an important monotonicity formula: the reduced volume.

Actually, by looking at the g̃ length of a space time curve γ(τ), 0 ≤ τ ≤ τ̄ ,

∫ τ̄

0

√(
N

2τ
+ R

)
+ |γ̇(τ)|2gij(τ)dτ

=
√

2Nτ̄ +
1√
2N

∫ τ̄

0

√
τ(R + |γ̇(τ)|2gij

)dτ + O(N− 3
2 ),

we find the expression of L distance
∫ τ̄
0

√
τ(R + |γ̇(τ)|2gij

)dτ. By computing
the volumes of geodesic spheres of radii

√
2Nτ̄ on M̃ and Rn+N+1, we have

V ol(SM̃ (
√

2Nτ̄))

V ol(SRn+N+1(
√

2Nτ̄))
≈ const · N− n

2 ·
∫

M
(τ̄)− n

2 exp
{

− 1
2
√

τ̄
L(x, τ̄)

}
dVM .

Proposition 3.4 indicates that the quantity∫
M

(τ̄)− n
2 exp{− 1

2
√

τ̄
L(x, τ̄)}dVM

should be non-increasing in τ̄ . This quantity is called Perelman’s reduced
volume and we denote it by V (τ̄).

The rigorous proof of this monotonicity can be obtained in the following
way. One computes the first and second variation for the L-length (3.5)
to get

Lemma 3.5 (Perelman [80]). For the reduced distance l(q, τ̄) defined in
(3.6), there hold

∂l

∂τ̄
= − l

τ̄
+ R +

1
2τ̄3/2 K(3.10)

|∇l|2 = − R +
l

τ̄
− 1

τ̄3/2 K(3.11)

Δl ≤ − R +
n

2τ̄
− 1

2τ̄3/2 K.(3.12)

where

K =
∫ τ̄

0
τ

3
2 Q(X)dτ,

and

Q(X) = − Rτ − R

τ
− 2 <∇R, X > + 2Ric(X, X)
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is the trace Li-Yau-Hamilton quadratic. Moreover, the equality in (3.12)
holds if and only if the solution along the L minimal geodesic γ satisfies the
gradient soliton equation

Rij +
1

2
√

τ̄
∇i∇jL=

1
2τ̄

gij .

The combination of (3.10)-(3.12) gives

(3.13)
(

∂

∂τ
− � + R

)
((4πτ̄)− n

2 e−l) ≤ 0.

If the manifold is compact, then by integrating, the reduced volume satisfies

(3.14)
d

dτ̄
V (τ̄) =

d

dτ̄

∫
M

(4πτ̄)− n
2 e−ldVτ̄ (q) ≤ 0,

and equality holds if and only if we are on a shrinking gradient soliton.
To carry the monotonicity to noncompact manifolds, Perelman [80]

established a Jacobian comparison for the exponential map associated to
the L-length. From the L-length, one defines an L-exponential map (with
parameter τ̄) Lexp(τ̄) : TpM → M as follows: for any X ∈ TpM ,
set LexpX(τ̄) = γ(τ̄), where γ is an L-geodesic satisfying γ(0) = p and
limτ→0

√
τ γ̇(τ) = X. Let J(τ) be the Jacobian of the L-exponential map

along γ(τ), 0 ≤ τ ≤ τ̄ . Then by the standard computation of Jacobi fields,
we obtain

d

dτ
log J(τ) = Δl + R

along any minimal L-geodesic γ. Combining with equations (3.10)-(3.12) in
the Lemma (3.5), this gives

Theorem 3.6 (Perelman’s Jacobian comparison [80]). Along any
minimal L-geodesic γ, we have

(3.15)
d

dτ
{(4πτ)− n

2 exp(−l(τ))J(τ)} ≤ 0.

Consequently, we obtain

Theorem 3.7 (Monotonicity of the Perelman’s reduced volume). Let
gij be a family of complete metrics evolving by the Ricci flow ∂

∂τ gij = 2Rij

on a manifold M with bounded curvature. Fix a point p in M and let l(q, τ)
be the reduced distance from (p, 0). Then

(i) Perelman’s reduced volume

Ṽ (τ) =
∫

M
(4πτ)− n

2 exp(−l(q, τ))dVτ (q)

is finite and nonincreasing in τ ;
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(ii) the monotonicity is strict unless we are on a gradient shrinking
soliton.

Now we are going to use the reduced volume to derive a slightly weaker
version of Theorem 3.2. The advantage of this new method is that it allows
to be adapted to the case that the solutions are only locally defined. This
will be extremely important in the analysis of surgical solutions.

Definition 3.8. We say a solution to the Ricci flow is κ-noncollapsed at
(x0, t0) on the scale r for positive constants κ and r if it satisfies the following
property: if |Rm|(x, t) ≤ r−2 for all x ∈ Bt0(x0, r) and t ∈ [t0 − r2, t0], then
we have

volt0(Bt0(x0, r)) ≥κrn.

Theorem 3.9 (Perelman [80]). Let (Mn, gij) be a complete Riemann-
ian manifold with bounded curvature |Rm| ≤ k0 and with injectivity radius
bounded from below by inj(M, gij) ≥ i0. Let gij(x, t), t ∈ [0, T ) be a smooth
solution to the Ricci flow with bounded curvature for each t ∈ [0, T ) and
gij(x, 0) = gij(x). Then there is a κ > 0 depending only on k0, i0 and T such
that the solution is κ-noncollapsed on scales ≤

√
T .

A sketch of the proof is given as follows. Argue by contradiction. Suppose
|Rm|(x, t) ≤ r−2 for all x ∈ Bt0(x0, r) and t ∈ [t0 − r2, t0], but

volt0(Bt0(x0, r))
rn

= εn

is very small. Write

Ṽ (εr2) =
∫

M
(4πεr2)− n

2 exp(−l(q, εr2))dVt0−εr2(q)

≤
∫

Lexp{|v| ≤ 1
4 ε−1/2}(εr2)

(4πεr2)− n
2 exp(−l(q, εr2))dVt0−εr2(q)

+
∫

Lexp{|v| > 1
4 εε−1/2}(εr2)

(4πεr2)− n
2 exp(−l(q, εr2))dVt0−εr2(q)

≤ I + II.

(3.16)

First of all, it can be shown Lexp
{|X| ≤ 1

4 ε− 1
2 }

(εr2) ⊂ Bt0(x0, r), and

l(q, εr2) ≥ −C(n)ε on Bt0(x0, r). This implies I ≤C(n)ε− n
2 εn = C(n)ε

n
2 . By

the monotonicity (3.15) of L-Jacobian, one has

II ≤
∫

{|X| ≥ 1
4 ε− 1

2 }
(4π)− n

2 exp(−|X|2)dX ≤ ε
n
2 ,
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hence

(3.17) Ṽ (εr2) ≤C(n)ε
n
2 .

On the other hand, by Lemma (3.5),

(3.18)
∂L̄

∂τ
+ �L̄≤ 2n

where L̄(q, τ) = 4τ l(q, τ). It follows from maximum principle that there is a
point q0 ∈ M such that l(q0, t0− 1

C(n)k0
) ≤ n

2 . Since the geometry is controlled
on B0(q0, 1) × [0, 1

C(n)k0
], one then has l(q, t0) ≤Const. on B0(q0, 1), which

implies

Ṽ (t0) ≥
∫

B0(P0,1)
(4πt0)− n

2 e−ldv ≥Const. > 0.

This contradicts with the monotonicity of the reduced volume when ε is
small enough.

4. The Formation of Singularities

Given a compact Riemannian manifold (M, g), we evolve the metric by
the Ricci flow

∂gij

∂t
= − 2Rij .

We say a solution gij(x, t), t ∈ [0, T ) is a maximal solution to the Ricci
flow with gij(x, 0) = gij(x), if either T = ∞, or T < ∞ and the curvature
becomes unbounded as t → T. If T is finite, we say the solution develops
singularities at the time T . In the early 90’s, Hamilton initiated the program
to investigate the formation of singularities.

4.1. Hamilton’s Compactness Theorem. To understand the struc-
ture of a singularity, similar to the study of minimal surface theory and
harmonic map theory, one tries to dilate the solution around the singularity
and then take a limit of the rescaled sequence of solutions. In order to do
this, a compactness theorem for solutions to the Ricci flow is needed.

The standard compactness theorems for Riemannian manifolds in C1,α

norm are available by the works of Gromov [38], Peters [83], Greene-Wu
[35], etc. Thanks to Shi’s derivative estimates (Theorem 1.4), we know that
all the derivatives of curvature are guaranteed to be bounded once curvature
is bounded for any solution to the Ricci flow. Based on this fact, Hamilton
[46] established a C∞ compactness theorem for solutions of the Ricci flow. A
slight generalization of Hamilton’s compactness theorem is given by below.

Theorem 4.1 (Hamilton [46, 47]; see also [14]). Let (Mk, gk(t), pk), t ∈
(A, Ω] with A < 0 ≤ Ω, be a sequence of evolving marked complete Riemann-
ian manifolds. Consider a sequence of geodesic balls B0(pk, sk) ⊂ Mk of
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radii sk(0 < sk ≤ + ∞), with sk → s∞( ≤ + ∞), around the base points pk

in the metrics gk(0). Suppose each gk(t) is a solution to the Ricci flow on
B0(pk, sk) × (A, Ω]. Suppose also

(i) for every radius r < s∞ there exist positive constants C(r) and k(r)
independent of k such that the curvature tensors Rm(gk) of the
evolving metrics gk(t) satisfy the bound

|Rm(gk)| ≤C(r)

on B0(pk, r) × (A, Ω] for all k ≥ k(r), and
(ii) there exists a constant δ > 0 such that the injectivity radii of Mk at

pk in the metric gk(0) satisfy the bound

inj(Mk, pk, gk(0)) ≥ δ > 0

for all k = 1, 2, . . ..
Then there exists a subsequence of (B0(pk, sk), gk(t), pk) over t ∈ (A, Ω]

which converges in C∞
loc topology to a solution (B∞, g∞(t), p∞) over t ∈

(A, Ω] to the Ricci flow, where, at the time t = 0, B∞ is a geodesic open ball
centered at p∞ ∈ B∞ with the radius s∞. Moreover the limiting solution is
complete if s∞ = +∞.

4.2. Hamilton’s Classification of Singularities. In [47], Hamilton
divided all maximal solutions, according to the blow-up rate of maximal
curvatures Kmax(t) : = supx∈M |Rm|(x, t), into three types:

Type I: T < +∞ and supt∈[0,T )(T − t)Kmax(t) < +∞;

Type II: (a) T < +∞ but supt∈[0,T )(T − t)Kmax(t) = +∞;
(b) T = +∞ but supt∈[0,T ) tKmax(t) = +∞;

Type III: (a) T = +∞, supt∈[0,T ) tKmax(t) < +∞, and

lim sup
t→+∞

tKmax(t) > 0;

(b) T = +∞, supt∈[0,T ) tKmax(t) < +∞, and

lim sup
t→+∞

tKmax(t) = 0.

To understand the structure of a singularity, one can follow Hamilton in
[47] by first picking a sequence of space-time points (xk, tk) which approach
the singularity, then rescaling the solution around these points so that the
norm of the curvature of each rescaled solution in the sequence is bounded
by 2 everywhere and equal to 1 at the chosen points. (Such space-time
points (xk, tk) are called almost maximal points to the maximal solution).
The noncollapsing theorem of Perelman in the previous section gives the
desired injectivity radius estimate (ii) for the rescaled sequence of solutions.
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Thus one can apply Hamilton’s compactness theorem to take a limit and
conclude that any rescaling limit must be one of the singularity models in
the following sense.

Definition 4.2 (Hamilton [47]). A solution gij(x, t) to the Ricci flow
on the manifold M , where either M is compact or at each time t the met-
ric gij(·, t) is complete and has bounded curvature, is called a singularity
model if it is not flat and of one of the following three types:
Type I: The solution exists for t ∈ (−∞, Ω) for some constant Ω with
0 < Ω < +∞ and

|Rm| ≤Ω/(Ω − t)

everywhere with equality somewhere at t = 0;
Type II: The solution exists for t ∈ (−∞, +∞) and

|Rm| ≤ 1

everywhere with equality somewhere at t = 0;
Type III: The solution exists for t ∈ (−A, +∞) for some constant A with
0 < A <+∞ and

|Rm| ≤A/(A + t)

everywhere with equality somewhere at t = 0.

In the special case of nonnegative curvatures, the singularity models of
Type II and III can be further characterized as Ricci solitons.

Theorem 4.3.
(i) (Hamilton [45]) Any Type II singularity model with nonnegative

curvature operator and positive Ricci curvature must be a (steady)
Ricci soliton.

(ii) (Chen-Zhu [21]) Any Type III singularity model with nonnega-
tive curvature operator and positive Ricci curvature must be a
homothetically expanding Ricci soliton.

(iii) (Cao [10]) Any Type II or III singularity model on a Kähler
manifold with nonnegative holomorphic bisectional curvature and
positive Ricci curvature must be a steady Kähler-Ricci soliton or
an expanding Kähler-Ricci soliton.

For Type I singularity models, N. Sesum [90] obtained the following
characterization in the compact case.

Theorem 4.4. Let (M, gij(x, t)) be a compact Type I singularity model
obtained as a rescaling limit of Type I maximal solution. Then (M, gij(x, t))
must be a (non-flat) gradient shrinking Ricci soliton.
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Very recently Naber [72] showed that a suitable rescaling limit of any
Type I maximal solution is a gradient shrinking soliton. However, it is still
an interesting question when the rescaling limit must be non-flat.

In recent years, there have been some research activities on the ques-
tion what kind of singularity models can be realized by the Ricci flow. We
have seen from the Differential Sphere Theorems obtained in [41, 42, 8],
and [6] that manifolds with positive curvatures (positive Ricci curvature in
dimension 3, positive or two-positive curvature operator and 1/4-pinch in
dimensions greater than 3) always develop spherical Type I singularities in
the sense the singularity model is the round sphere. Apart from the spher-
ical Type I singularities, there should exist a necklike Type I singularity in
the sense the singularity models are the round cylinders. The existence of
necklike Type I singularities was first demonstrated by M. Simon [93] on
noncompact warped product R ×f Sn. Later, Feldman-Ilmanen-Knopf [33]
also found such necklike Type I singularities on some noncompact Kähler
manifold, the total space of certain holomorphic line bundle L−k over the
complex projective space CPn. The existence of neckpinch Type I singulari-
ties on compact manifolds was recently proved by S. Angenent and D. Knopf
[2] on Sn+1 with suitable rotationally symmetric metrics. It is also interest-
ing to see if a Type II singularity could be really formed in the Ricci flow. In
[31], Daskalopoulos and Hamilton showed that a Type II singularity can be
developed by the Ricci flow on the noncompact R2. The intuition of forming
a Type II singularity on compact manifolds was described by Hamilton [47]
(see also [28] and [99]) and the existence of a Type II singularity on compact
manifolds was also proposed as an open question in the introduction of the
book of Chow-Lu-Ni [29]. Most recently, Hui-Ling Gu and the last author
[40] extended some arguments of Perelman to higher dimensions so as to
show that a Type II singularity can be formed by the Ricci flow on Sn with
suitable rotationally symmetric metric for all n ≥ 3.

4.3. Ancient κ-solutions. Once we have a basic understanding for
those singularities developed by almost maximum points, we now want to
consider those singularities which might not come from almost maximum
points. If we are considering a general singularity developed by the Ricci
flow in a finite time on a compact manifold, then any rescaling limit around
the singularity will define at least on (−∞, 0), called an ancient solution.
Moreover, by Perelman’s noncollapsing result, there is some positive con-
stant κ so that the rescaling limit is κ-noncollapsing for all scales. So any
rescaling limit for singularities developed by the Ricci flow on compact man-
ifolds is κ-noncollapsing and defined at least on the time interval (−∞, 0).
Up to now, all understandings to these rescaling limits are restricted on
the class that have nonnegative curvature operators. That is, according to
Perelman [80], we only consider ancient κ-solutions, i.e., each of them is
defined on (−∞, 0), has bounded and nonnegative curvature operators and
is κ-noncollapsing for all scales for some κ > 0. Notice, by Hamilton-Ivey
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pinching estimate and Perelman’s noncollapsing result, that any rescaling
limit of the Ricci flow on compact three-manifolds is an ancient κ-solution
for some κ > 0.

The main purpose of this section is to review the properties of ancient
κ-solutions and eventually to get a rather complete understanding to the
ancient κ-solutions in certain low dimension cases. Firstly, two-dimensional
ancient κ-solutions have been completely classified by Hamilton [47].

Theorem 4.5. Any two-dimensional κ-noncollapsing non-flat ancient
solution must be either the round sphere S2 or the round real projective
space RP2

In fact, Hamilton [47] proved a somewhat stronger result: any two-
dimensional complete non-flat ancient soltion of bounded curvature must
be the round sphere S2, the round real project space RP2, or the cigar soli-
ton. Note that the cigar soliton does not satisfy the κ-noncollapsing property
for large scales.

Three-dimensional ancient κ-solutions have not yet been completely
classified. Nevertheless, Perelman obtained a complete classification to a spe-
cial class of three-dimensional ancient κ-solutions – the shrinking gradient
solitons.

Lemma 4.6 (Perelman [81]). Let (M, gij(t)) be a nonflat gradient shrink-
ing soliton to the Ricci flow on a three-manifold. Suppose (M, gij(t)) has
bounded and nonnegative sectional curvature and is κ-noncollapsed on all
scales for some κ > 0. Then (M, gij(t)) is one of the followings:

(i) the round three-sphere S3, or its metric quotients;
(ii) the round infinite cylinder S2 × R, or its Z2 quotients.

Perelman’s proof is based on the investigation of the shrinking soliton
equation

Rij + fij +
gij

2t
= 0, t < 0.

By applying Hamilton’s strong maximum principle, one can easily charac-
terize the shrinking soltions as either the round three-sphere S3, or the round
infinite cylinder S2 × R or a metric quotient of them, except the case when
the soliton is noncompact and has positive sectional curvature everywhere.
We now briefly describe Perelman’s arguments in excluding the possibility
of such noncompact 3-dimensional solitons with positive sectional curvature.

Consider the metric at t = −1. By investigating the soliton equation and
the second variation formula, we find that f(x) ≈ 1

4d2(x, x0) and |∇f |2 ≈
1
4d2(x, x0). From ∇iR = 2Rij∇jf , we know R is increasing along the integral
curves of the potential function f . It is not hard to see that the solution at
infinity splits off a line R. By comparing the existence time of the Ricci flow
on standard S2, we find R̄ = lim supd−1(x,x0) R(x,−1) ≤ 1. Consider the area
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of level sets of f , we have

d

dt
area{f = a} =

∫
{f = a}

div

(
∇f

|∇f |

)
≥

∫
{f = a}

1
|∇f |(1 − R) ≥ 1 − R̄

2
√

a
area{f = a}.

This forces R̄ = 1 and the area of {f = a} is increasing to the area of S2

with constant curvature 1
2 . On the other hand, by the Gauss equation

and the soliton equation, the intrinsic curvature of {f = a}(a � 1) can
be computed as

K = R1212 +
det(Hess(f))

|∇f |2 <
1
2
,

which is a contradiction with the Gauss-Bonnet formula.
Remark: The above Perelman’s result has been improved by Ni-

Wallach [77] and Naber [72] in which they dropped the assumption on
κ-noncollapsing condition and replaced nonnegative sectional curvature by
nonnegative Ricci curvature. In addition, Ni-Wallach [77] can allow the cur-
vature to grow as fast as ear2(x), where r(x) is the distance function and a is
a suitable small positive constant. In particular, Ni-Wallach’s result implies
that any 3-dimensional noncompact non-flat gradient shrinking soliton with
nonnegative Ricci curvature and with curvature not growing faster than
ear2(x) must be a quotient of the round infinite cylinder S2 × R. Now using
the work of the second author in [19], we can further improve this latter
result of Ni-Wallach as follows.

Proposition 4.7. Let (M3, gij) be a 3-dimensional complete noncom-
pact non-flat shrinking gradient soliton. Then (M3, gij) is a quotient of the
round neck S2 × R.

Proof. In view of the result of Ni-Wallach mentioned above, it suffices
to show that our shrinking gradient soliton in fact has nonnegative Ricci
curvature and satisfies the growth restriction on curvature.

First of all, by the work of the second author (see Corollary 2.4 of [19]),
we know that the sectional curvature of gij must be nonnegative.

Next we claim that the scalar curvature, hence the curvature tensor,
of gij grows at most quadratically in distance. Indeed, from the shrinking
soliton equation

Rij + fij − 1
2
gij = 0,

it is not hard to see
Rjl∇lf =

1
2
∇jR

and
R + |∇f |2 − f = Const.
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It then follows that |∇f |2 ≤ f + Const, because R is nonnegative. Thus, we
obtain

|∇
√

|f | + 1| ≤Const,

and hence
|f |(x) ≤C(d(x, x0)2 + 1).

Therefore,
R(x) ≤C(d(x, x0)2 + 1).

This completes the proof of the proposition. �

Clearly Perelman’s argument using the Gauss-Bonnet formula imposes
a restriction on the dimension. Thus an interesting open question is whether
a similar classification of non-negatively curved shrinking solitons holds
in higher dimensions. For n = 4, Ni and Wallach [78] showed that any
4-dimensional complete gradient shrinking soliton with nonnegative curva-
ture operator and positive isotropic curvature, satisfying certain additional
assumptions, is either a quotient of S4 or a quotient of S3 ×R. Based on this
result of Ni-Wallach, Naber [72] proved that

Proposition 4.8 (Naber [72]). Any 4-dimensional complete noncom-
pact shrinking Ricci soliton with bounded nonnegative curvature operator is
isometric to either R4, or a finite quotient of S3 × R or S2 × R2.

For higher dimensions, Gu and the last author [40] proved that any
complete, rotationally symmetric, non-flat, n-dimensional (n ≥ 3) shrinking
Ricci soliton with κ-noncollapsing on all scales and with bounded and non-
negative sectional curvature must be the round sphere Sn or the round
cylinder Sn−1 × R. Subsequently, Kotschwar [59] proved a more general
result that the only complete shrinking Ricci solitons (without curvature
sign and bound assumptions) of rotationally symmetric metrics (on Sn, Rn

and R × Sn−1) are, respectively, the round, flat, and standard cylindrical
metrics. Ni-Wallach [77] and Petersen-Wylie [86] also proved a classification
result on gradient shrinking solitons with vanishing Weyl curvature tensor
which includes all the rotationally symmetric ones. For additional recent
results on shrinking or expanding Ricci solitons, see the works of Petersen
and Wylie [84, 85].

Let us come back to the discussion on general ancient κ-solutions. Given
a three-dimensional ancient κ-solution, one can pick a suitable sequence of
space-time points (xk, tk) with tk → −∞ as in [81] and take a rescaling
limit, usually called a blow-down limit. By using the monotonicity of the
reduced volume, Perelman [80] showed that the blow-down limit is nec-
essarily a shrinking Ricci soliton. Then, based on the above classification
lemma (Lemma 4.6) for three-dimensional shrinking Ricci solitons and imi-
tating the argument as in proving his noncollapsing result, Perelman [81]
obtained the following important universal noncollapsing property for all
three-dimensional ancient κ-solutions.
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Proposition 4.9 (Universal Noncollapsing [81]). There exists a positive
constant κ0 with the following property. Suppose we have a non-flat three-
dimensional ancient κ-solution for some κ > 0. Then either the solution is
κ0-noncollapsed on all scales, or it is a metric quotient of the round three-
sphere.

This universal noncollapsing property for three-dimensional ancient
κ-solutions has been used indispensably by Perelman in [81] to prove the
noncollapsing of surgical solutions to the Ricci flow with surgery. When
extending the Hamilton-Perelman theory of three-dimensional Ricci flow
with surgery to higher dimensions, one must meet the question how to ver-
ify the universal property to ancient κ-solutions. Due to the lack of complete
classification of higher dimensional positively curved shrinking Ricci solitons,
it is desirable to find an alternative way, without using the classification
of shrinking Ricci solitons, to prove the universal noncollapsing property.
Indeed, an alternative approach had been given by the last two authors
in [25] to handle a class C of ancient κ-solutions without any knowledge
of classification of gradient shrinking solitons. Roughly speaking, the class
C contains all ancient κ-solutions where each of them at infinity splits as
Sn−1 × R. In particular, all ancient three-dimensional κ-solutions and four-
dimensional ancient κ-solutions with restrictive isotropic curvature pinching
belong to this class C. Here we say a four-dimensional ancient κ-solution
satisfies restricted isotropic curvature pinching if there is some fixed Λ > 0
such that

a3 ≤ Λa1, c3 ≤ Λc1, b2
3 ≤ a1c1,

where Rm =
(

A B
tB C

)
is the usual block decomposition of curvature operator

in dimension 4 and ai, bi, ci are eigenvalues of the corresponding matrixes
A, B, C. By Hamilton’s pinching estimate in [48], such four-dimensional
ancient κ-solutions with restricted isotropic curvature pinching appears
naturally as the singularity models of Ricci flow on compact four-manifolds
with positive isotropic curvature.

Dimension reduction is a useful approach to understand the structure
of singularities in the theory of minimal surfaces or harmonic maps. In his
survey paper [47], Hamilton systemically developed the dimension reduction
method for the Ricci flow. From Hamilton’s classification to two-dimensional
ancient solutions, one observes that any two-dimensional complete ancient
solution of bounded curvature cannot be of maximal volume growth. Based
on this observation and by applying a dimension reduction argument,
Perelman [80] proved

Proposition 4.10 (Non-maximal Volume Growth). Let M be
an n-dimensional complete noncompact Riemannian manifold. Suppose
gij(x, t), x ∈ M and t ∈ (−∞, T ) with T > 0, is a nonflat ancient solu-
tion of the Ricci flow with a nonnegative curvature operator and bounded



“Ch03” — 2008/4/21 — 13:10 — page 81 — #35
�

�

�

�

�

�

�

�

RECENT DEVELOPMENTS ON HAMILTON’S RICCI FLOW 81

curvature. Then the asymptotic volume ratio of the solution metric satisfies

νM (t) = lim
r→+∞

V olt(Bt(O, r))
rn

= 0

for each t ∈ (−∞, T ).

The same result for the Ricci flow on Kähler manifolds has been inde-
pendently discovered by the last two authors in [23]. Moreover, for the Ricci
flow on Kähler manifolds, it is proved by the last two authors and Tang [20]
in complex dimension two and by Ni [74] for all dimensions that the nonneg-
ative curvature operator condition can be replaced by the weaker condition
of nonnegative holomorphic bisectional curvature.

By a standard rescaling argument, using the above non-maximal volume
growth property, Perelman [80] got a local curvature bound of solutions in
terms of local volume lower bound. Conversely, the noncollapsing estimate
of Perelman says that local curvature bound can control the local volume
lower bound (see Figure 1). Hence the combination of these two facts would
imply an elliptic type estimate, which allows one to compare the values of
the curvatures at different points at the same time. Such an estimate was
first implicitly given by Perelman in [80]. The following version is taken
from [14] and [25].

Proposition 4.11 (Elliptic Type Estimate). There exist a positive
constant η and a positive function ω : [0, +∞) → (0, +∞) with the fol-
lowing properties. Suppose that (M, gij(t)),−∞< t ≤ 0, is a 3-dimensional
ancient κ-solution or a 4-dimensional ancient κ-solution with restricted
isotropic curvature pinching, for some κ > 0. Then

(i) for every x, y ∈ M and t ∈ (−∞, 0], there holds

R(x, t) ≤ R(y, t) · ω(R(y, t)d2
t (x, y));

Figure 1. ε-neck and ε-cap.



“Ch03” — 2008/4/21 — 13:10 — page 82 — #36
�

�

�

�

�

�

�

�

82 H.-D. CAO, B.-L. CHEN, AND X.-P. ZHU

(ii) for all x ∈ M and t ∈ (−∞, 0], there hold

|∇R|(x, t) ≤ ηR
3
2 (x, t) and |Rt|(x, t) ≤ ηR2(x, t).

Let us come back to consider three-dimensional ancient κ-solutions. In
view of Hamilton’s dimension reduction, each noncompact three-dimensional
ancient κ-solution splits off a line at infinity. Then by combining the classifi-
cation of two-dimensional ancient κ-solutions, we see that each noncompact
non-flat three-dimensional ancient κ-solution is asymptotic to a round cylin-
der at infinity. On the other hand, by applying the universal noncollapsing
Proposition 4.9 and the above elliptic type estimate Proposition 4.11, we
know that the space of non-flat three-dimensional ancient κ-solutions is
compact modulo scalings and the quotients of the round sphere S3. This
compactness property and asymptotically cylindric property allow us to use
a standard rescaling argument to get a canonical neighborhood property,
due to Perelman [81], for three-dimensional ancient κ-solutions.

Before stating the canonical neighborhood result, we introduce the
terminologies of evolving ε-neck and ε-cap.

Fix ε > 0. Let gij(x, t) be a non-flat ancient κ-solution on a three-
manifold M for some κ > 0. We say that a point x0 ∈ M is the center
of an evolving ε-neck at t = 0, if the solution gij(x, t) in the set {(x, t)| −
ε−2Q−1 < t ≤ 0, d2

t (x, x0) < ε−2Q−1}, where Q= R(x0, 0), is, after scaling
with factor Q, ε-close (in C [ε−1] topology) to the corresponding set of the
evolving round cylinder, having scalar curvature one at t = 0. An evolving
ε-cap is the time slice at the time t of an evolving metric on B3 or RP3 \ B̄3

such that the region outside some suitable compact subset of B3 or RP3 \ B̄3

is an evolving ε-neck.

Theorem 4.12 (Canonical neighborhood theorem [81]). For every suf-
ficiently small ε > 0 one can find positive constants C1 = C1(ε), C2 = C2(ε)
with the following property. Suppose we have a three-dimensional nonflat
(compact or noncompact) ancient κ-solution (M, gij(x, t)). Then either the
ancient solution is the round RP2×R, or every point (x, t) has an open neigh-
borhood B, with Bt(x, r) ⊂ B ⊂ Bt(x, 2r) for some 0 < r < C1R(x, t)− 1

2 ,
which falls into one of the following three categories:

(a) B is an evolving ε-neck, or
(b) B is an evolving ε-cap, or
(c) B is a compact manifold (without boundary) with positive sec-

tional curvature (thus it is diffeomorphic to the round three-sphere
S3 or its metric quotients); furthermore, the scalar curvature of
the ancient κ-solution in B at time t is between C−1

2 R(x, t) and
C2R(x, t), and its volume in cases (a) and (b) satisfies

(C2R(x, t))− 3
2 ≤V olt(B) ≤ εr3.
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Finally, we remark that this canonical neighborhood theorem has been
extended by the last two authors [25] to all four-dimensional ancient
κ-solutions with restrictive isotropic curvature pinching.

4.4. Singularity Structure Theorem. Let (M, gij) be a compact ori-
ented three-manifold. Evolve the metric gij by the Ricci flow. Denote by
[0, T ) the maximal time interval. Suppose T < ∞, then supx∈M |Rm|(x, t) →
∞ as t → T. Let (xk, tk) be a sequence of almost maximal points, i.e.
supt ≤ tk

|Rm|(·, t) ≤C|Rm|(xk, tk), tk → T, for some uniform constant C.
Scale the solution around (xk, tk) with factor Qk = |Rm|(xk, tk) and shift
the time tk to 0. By applying Hamilton’s compactness theorem, Perelman’s
local non-collapsing theorem, as well as Hamilton-Ivey pinching estimate,
one can extract a convergent subsequence such that the limit is an oriented
ancient κ-solution. Observe that RP2 × R is excluded since it is not ori-
entable. Consequently, for an arbitrarily given ε > 0, the solution around
the points xk and at times tk → T have canonical neighborhoods which
are either an ε-neck, or an ε-cap, or a compact positively curved manifold
(without boundary). This gives the structure of singularities coming from a
sequence of (almost) maximum points.

However the above argument does not work for singularities coming
from a sequence of points (yk, sk) with sk → T and |Rm(yk, sk)| → +∞
when |Rm(yk, sk)| is not comparable with the maximum of the curvature at
time sk, since we cannot take a limit directly. To overcome this difficulty,
Perelman [80] developed a refined blow up argument.

For convenience of stating the estimates, we may assume the initial data
is normalized, namely, the norm of the curvature operator is less than 1

10
and the volume of the unit ball is bigger than 1.

Theorem 4.13 (Singularity structure theorem [80]). Given ε > 0 and
T0 > 0, one can find r0 > 0 with the following property. If gij(x, t), x ∈ M
and t ∈ [0, T ) with 1 < T ≤T0, is a solution to the Ricci flow on a
compact oriented three-manifold M with normalized initial metric, then
for any point (x0, t0) with t0 ≥ 1 and Q= R(x0, t0) ≥ r−2

0 , the solution in
{(x, t) | d2

t0(x, x0) < ε−2Q−1, t0 − ε−2Q−1 ≤ t ≤ t0} is, after scaling by the
factor Q, ε-close (in C [ε−1]-topology) to the corresponding subset of some
oriented ancient κ-solution (for some κ > 0).

We now would like to give a outline of the proof. The proof is divided
into four steps. The first three steps are basically following the line given
by Perelman in [80]; while the last step is an alternative argument which is
taken from [14] or [25].

The proof is an argument by contradiction. Suppose for some ε > 0,
T0 > 1, there exist a sequence of rk → 0, 1 < Tk ≤T0 and solutions
(Mk, gk(·, t)), t ∈ [0, Tk), satisfying the assumption of the theorem, but
the conclusion of the theorem fails at some xk ∈ Mk and times tk ≥ 1
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with Qk = Rk(xk, tk) ≥ r−2
k . For each such solution, we adjust the point

(xk, tk) so that the value of the curvature at (xk, tk) is as large as pos-
sible so that the conclusion of the theorem fails at (xk, tk), but holds
for any (x, t) ∈ Mk × [tk − HkQ

−1
k , tk] satisfying Rk(x, t) ≥ 2Qk, where

Hk = 1
4r−2

k → +∞ as k → +∞.
Let (Mk, g̃k(·, t), xk) be the rescaled solutions obtained by rescaling

(Mk, gk(·, t)) around xk with the factors Qk = Rk(xk, tk) and shifting the
time tk to the new time zero. Denote by R̃k the rescaled scalar curvature.
We will show that a subsequence of the rescaled solutions (Mk, g̃k(·, t), xk)
converges in C∞

loc topology to an ancient κ-solution. This will be a contra-
diction.

The argument is divided into four steps.
Step 1. First of all, we need a local bound on curvature.
For each (x̄, t̄) with tk − 1

2HkQ
−1
k ≤ t̄ ≤ tk, we have

Rk(x, t) ≤ 4Q̄k

whenever t̄−cQ̄−1
k ≤ t ≤ t̄ and d2

t̄ (x, x̄) ≤ cQ̄−1
k , where Q̄k = Qk +Rk(x̄, t̄) and

c > 0 is a small universal constant.
This result is a simple consequence of the gradient estimate (ii) in

Proposition 4.11. Indeed, since any ancient κ-solution satisfies the gradient
estimate

(4.1) |∇R− 1
2 | + | ∂

∂t
R−1| ≤ 2η,

the desired curvature bound follows directly from integrating the gradient
estimate along a space-time path.
Step 2. This step is to show that the curvature of rescaled solution is
bounded at bounded distance at time t = 0. The detailed exposition to this
step was first given by Kleiner-Lott in the first version of their notes [56].
The idea of the proof can be described as follows.

For all ρ ≥ 0, set

M(ρ) = sup{R̃k(x, 0) | k ≥ 1, x ∈ Mk with d0(x, xk) ≤ ρ}

and
ρ0 = sup{ρ ≥ 0 | M(ρ) < +∞}.

By Hamilton-Ivey’s pinching estimate, it suffices to show ρ0 = +∞. Still
argue by contradiction. Suppose there is a sequence of points yk so that the
rescaled R̃(yk, 0) → +∞ and d̃0(xk, yk) → ρ0 > 0. Connecting xk and yk with
a minimal geodesic γk. By Step 1, Hamilton’s compactness theorem 4.1 and
Perelman’s noncollapsing theorem, there is a convergent subsequence such
that the limit has nonnegative sectional curvature on the ball of radius ρ0.
The curvature still blows up along the limiting geodesic γ∞ by the gradient
estimate for ancient κ-solutions. Then by the choice of the points xk, one can
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show each such point on the limiting geodesic has a neck-like neighborhood.
So, by adding the end point q∞ to the limit geodesic, the union of the limiting
space and the added point q∞ has nonnegative curvature in Alexandrov
space sense. By blowing up the tangent cone at the q∞, we get a non-flat
solution to the Ricci flow on the cone, which is a contradiction to Hamilton’s
strong maximum principle.

Since the curvature is bounded at time 0, by gradient estimate (4.1)
and Hamilton’s compactness theorem, one can show the limit solution is
actually defined on the space-time open subset {(y, t̃) : y ∈ M∞, t ∈ [−1

4η−1

R̃∞(y)−1, 0]} containing M∞ × {0}.

Step 3. This step is to show that the limit (M∞, g̃∞(·, 0), x∞) at the time
slice {t = 0} has bounded curvature.

If the curvature is unbounded, by the virtue of Hamilton’s dimension
reduction, we can choose a sequence of points qj → ∞, and take a rescaled
limit around qj to get infinite number of tiny ε-necks. But this is a contra-
diction with the following basic geometry lemma, which was written down
by the last two authors in [25].

Lemma 4.14. There exists a constant ε0 = ε0(n) > 0 such that every com-
plete noncompact Riemannian manifold (Mn, gij) of nonnegative sectional
curvature has a positive constant r0 such that any ε-neck of radius r on
(Mn, gij) with ε ≤ ε0 must have r ≥ r0.

Here we call an open subset N ⊂Mn to be an ε-neck of radius r

if (N, r−2gij) is ε-close, in C [ε−1] topology, to a standard neck Sn−1 ×
(−ε−1, ε−1) where Sn−1 has the scalar curvature 1.

As a consequence, the limit can be extended backward to some uniform
interval (−C, 0] for some C > 0.

Step 4. This step is to show the limit can be extended backward to −∞.
Denote by

t′ = inf{ t̃ | we can take a smooth limit on (t̃, 0]
from a subsequence of the rescaled solutions g̃k}.

By the Li-Yau-Hamilton inequality, which must hold on the limit since
the curvature is bounded by Step 1 and Step 3, and Hamilton’s compactness
theorem, one can show that there is a subsequence of the rescaled solutions
g̃k which converges in C∞

loc topology to a smooth limit (M∞, g̃∞(·, t)) on the
maximal time interval (t′, 0]. We next claim that t′ = −∞.

Suppose not, then the curvature of the limit (M∞, g̃∞(·, t)) becomes
unbounded as t → t′ >−∞. By applying the maximum principle, we see
that the infimum of the scalar curvature is nondecreasing in time. Thus
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there exists some point y∞ ∈M∞ such that

R̃∞(y∞, t′ +
c

3
) <

3
2

where c > 0 is some universal small constant.
By using Step 1, we see that the limit (M∞, g̃∞(·, t)) at a small neigh-

borhood of the point (y∞, t′ + c
3) extends backward to the time interval

[t′ − c
3 , t′ + c

3 ]. Moreover, one can show the distances at the time t and the
time 0 are roughly equivalent in the following sense

(4.2) dt(x, y) ≥ d0(x, y) ≥ dt(x, y) − const.

This estimate ensures that the limit around the point y∞ at any time t ∈
(t′, 0] is exactly the original limit around x∞ at the time t = 0. By repeating
the same arguments as in the above Step 2 and Step 3 to the solution around
(yk, t) for t ∈ [t′ − c

3 , t′ + c
3 ], we conclude the original limit (M∞, g̃∞(·, t))

is actually well defined on the time slice M∞ × {t′} and also has uniformly
bounded curvature for all t ∈ [t′, 0]. This is a contradiction.

Therefore the proof of the theorem is completed.
We remark that this singularity structure theorem had been extended

by the last two authors in [25] to the Ricci flow on compact four-manifolds
with positive isotropic curvature.

5. Ricci Flow with Surgery

In this section, we will discuss the surgery theory of the Ricci
flow on three-dimensional manifolds. We also mention its extension to
four-dimensional manifolds with positive isotropic curvature.

5.1. The Solution at the First Singular Time. Given any compact
three-manifold M with an arbitrary Riemannian metric. By dilation, we may
always assume that the metric is normalized so that the absolute values of
the eigenvalues of its curvature operator at each point are bounded by 1/10
and every geodesic ball of radius one has a volume of at least one. Let us
evolve the normalized metric by the Ricci flow

∂gij

∂t
= − 2Rij ,

and let g(t), t ∈ [0, T ) be the maximal solution. If T < ∞, then curvature
becomes unbounded as t tends to T , we say the maximal solution develops
singularities as t tends to T and T is a singular time.

After obtaining the structure of points with suitably large curvature
before the first singular time as in Theorem 4.13, we can give a clear picture
of the solution near the singular time T as follows.
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For the given ε > 0 and the maximal solution (M, gij(·, t)) on [0, T ),
with T < ∞, we can find r0 > 0 depending only on T and ε such that each
point (x, t), with R(x, t) ≥ r−2

0 , admits a canonical neighborhood which
is either an ε-neck, or an ε-cap, or a compact positively curved manifold
(without boundary). In the last case the solution, by the well-known theorem
of Hamilton in [41] (see also Theorem 2.1), becomes extinct at time T and
the manifold M is diffeomorphic to the round three-sphere S3 or a metric
quotient of S3.

Let Ω denote the set of all points in M where the curvature stays
bounded as t → T . If Ω is empty, then the solution becomes extinct at time T .
In this case, either the manifold M is compact and positively curved, or it is
entirely covered by ε-necks and ε-caps shortly before the maximal time T .
So the manifold M is diffeomorphic to either S3, or a metric quotient of the
round S3, or S2 × S1, or RP3#RP3.

We now consider the case when Ω is nonempty. By using the local deriva-
tive estimates of Shi (Theorem 1.4), we see that as t → T the solution metric
g(t) has a smooth limit ḡ on Ω. Let R̄ denote the scalar curvature of ḡ. For
any 0< ρ < r0, let us consider the set

Ωρ = {x ∈ Ω | R̄(x) ≤ ρ−2}.

First, we need some terminologies:
A metric on S2 × I, such that each point is contained in some ε-neck, is

called an ε-tube, or an ε-horn, or a double ε-horn, if the scalar curvature
stays bounded on both ends, or stays bounded on one end and tends to
infinity on the other end, or tends to infinity on both ends, respectively (see
Figure 2);

A metric on B3 or RP3\B̄3 is called an capped ε-horn if each point out-
side some compact subset is contained in an ε-neck and the scalar curvature
tends to infinity on the end (see Figure 3).

Now take any ε-neck in (Ω, ḡ) and consider a point x on one of its
boundary components. If x ∈ Ω\Ωρ, then there is either an ε-cap or an
ε-neck, adjacent to the initial ε-neck. In the latter case we can take a point
on the boundary of the second ε-neck and continue. This procedure can
either terminate when we get into Ωρ or an ε-cap, or go on indefinitely,
producing an ε-horn. The same procedure can be repeated for the other
boundary component of the initial ε-neck. Therefore, taking into account
that Ω has no compact components, we conclude that each ε-neck of (Ω, ḡ)
is contained in a subset of Ω of one of the following types:

(a) an ε-tube with boundary components in Ωρ, or
(b) an ε-cap with boundary in Ωρ, or
(c) an ε-horn with boundary in Ωρ, or
(d) a capped ε-horn, or
(e) a double ε-horn.
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Figure 2. ε-tube, ε-horn and double ε-horn.

Figure 3. Capped ε-horn.

Similarly, each ε-cap of (Ω, ḡij) is contained in a subset of Ω of either type
(b) or type (d).

It is clear that there is a definite lower bound (depending on ρ) on the
volume of subsets of type (a), (b), and (c). So there can be only a finite
number of them. Thus we conclude that there is only a finite number of
components of Ω, containing points of Ωρ, and every such component has
a finite number of ends, each being an ε-horn. On the other hand, every
component of Ω containing no points of Ωρ is either a capped ε-horn, or a
double ε-horn. If we look at the solution g(t) at a slightly earlier time, the
above argument shows that each ε-neck or ε-cap of (M, g(t)) is contained
in a subset of type (a) or (b), while the ε-horns, capped ε-horns and double
ε-horns (at the maximal time T) are connected together to form ε-tubes and
ε-caps at any time t shortly before T (see Figure 4).

Let us denote by Ωj , 1 ≤ j ≤ m, the connected components of Ω which
contain points of Ωρ. Then the initial three-manifold M is diffeomorphic to
a connected sum of Ω̄j, 1 ≤ j ≤ m, with a finite number of copies of S2 × S1
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Ωρ

��

Ωρ

��

ε-horn
�� ε-tube

��

double ε-horn
�

capped ε-horn
�

Figure 4. Solution at a maximal time.

(which correspond to gluing a tube to two boundary components of the same
Ωj), and a finite number of copies of RP3. Here Ω̄j , j = 1, 2, . . . , m, is the
compact manifold (without boundary) obtained from Ωj by taking an ε-neck
in every ε-horn of Ωj , cutting it along the middle two-sphere, removing the
horn-shaped end, and gluing back a cap (or more precisely, a differentiable
three-ball).

5.2. Definition of Surgical Solutions. We have seen that when the
Ricci flow develops singularities, it gives a natural way to split the underlying
manifold M into pieces Ω1, . . . ,Ωm – the components of Ω containing points
of Ωρ. Thus to capture the topology of M , one only needs to understand
the topologies of the compact orientable three-manifolds Ω̄j , 1 ≤ j ≤ m,
described above.

Let us evolve each Ω̄j by the Ricci flow again and, when the solu-
tion develops singularities, perform the above surgeries to get new compact
orientable three-manifolds. By repeating this procedure, we will obtain a
“weak” solution to the Ricci flow, called a solution to the Ricci flow with
surgery or a surgically modified solution to the Ricci flow.

To get the topological information of the initial manifold M from the
Ricci flow with surgery, we have to construct a surgically modified solution
so that it has at most a finite number of surgeries at each finite interval
and admits a well-understood long-time behavior. In this section, we only
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consider the question of how to construct a surgically modified solution with
at most a finite number of surgeries at each finite interval.

Let us look at the above construction for surgical solutions in more
detail. Arbitrarily fix a small positive constant ε. On the given compact ori-
entable three-manifold M with a normalized Riemannian metric, we evolve
the normalized metric by the Ricci flow to obtain a maximal solution defined
on the maximal time interval [0, t1) with t1 < +∞. By the theorem on the
structure of singularity, there exists a small positive constant r0 such that
any point (x, t) at which (the norm of) the curvature is greater than r−2

0
has a canonical neighborhood. Then, according to the above discussions,
we can cut off canonical neighborhoods to get a new compact orientable
(not necessarily connected) three-manifold M1. Clearly, there are still some
points, in the remaining parts near the surgery region, on M1 at which
the curvature are not less than r−2

0 and then we cannot expect that the
metric of M1 is still normalized. After evolving M1 on a maximal time inter-
val [t1, t2) with t2 < +∞, we can only find canonical neighborhoods on the
region where the curvature is at least r−4

0 (since, to apply the theorem on
the structure of singularity, we have to dilate M1 with a factor at least r−2

0 ).
By performing the surgery again, we get a compact orientable (not neces-
sarily connected) three-manifold M2 and there are still some points on M2
with curvature not less than r−4

0 . By repeating this process, we will get a
surgically modified solution on some time interval [0, Tmax) with the surgery
times 0 < t1 < · · · < tk < · · · < Tmax such that at each tk, k = 1, 2, . . . , the
curvature is at least r−2k

0 somewhere. Intuitively, under this kind of surgery
procedures, the curvatures would become higher and higher and the time
intervals (tk−1, tk) become shorter and shorter. So, the surgery times of
such constructed surgically modified solution are likely to accumulate in
finite time. The trouble is basically caused by the inability to recognize the
canonical neighborhoods on some fixed size of (high) curvature.

If one can improve the above surgery procedures so that there exists a
uniform size on curvature to recognize canonical neighborhoods, then one
will be able to cut down the solution so that its curvature never exceeds
such a designed uniform size and hence each surgery will drop at least a
fixed amount of volume. This, in turn, will prevent the surgery times from
accumulating since one can easily show that the volume of the surgically
modified solution can grow (in time) at most exponentially. So, what one
really needs is to design a surgery procedure such that one can find a uniform
positive function r(t) on [0, +∞) so that any point (x, t) on the surgically
modified solution at which the curvature is greater than r(t)−2 has a canon-
ical neighborhood. The theorem on the structure of singularity precisely
ensures the existence of such a uniform function r(t) for smooth solutions.

Thus, to prevent the accumulation of surgery times, we are led to con-
struct surgically modified solutions which satisfy the following canonical
neighborhood assumption (we refer the readers to Section 7.3 in [14] for
precise definitions):
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Canonical neighborhood assumption (with accuracy ε): There exists
a nonincreasing positive function r : [0, +∞) → (0, +∞) such that at each
time t, each point x, where the scalar curvature R(x, t) is at least r−2(t),
has a neighborhood B falling into one of the three categories:

(a) B is a strong ε-neck, or
(b) B is an ε-cap, or
(c) B is a compact manifold (without boundary) of positive curvature.

The Hamilton-Ivey curvature pinching estimate is a special feature on three-
dimension. It plays an important role in the proof of the theorem of structure
of singularity. Thus one should also require the surgical solutions to satisfy
the following Hamilton-Ivey pinching condition:
Pinching assumption: The eigenvalues λ ≥μ≥ ν of the curvature operator
Rm of the surgical solution at each point and each time satisfy

R ≥ (−ν)[log(−ν) + log(1 + t) − 3]

whenever ν < 0.

5.3. Long-Time Existence of Surgical Solutions. Let ε be an
arbitrarily given small positive constant. We now describe how to use an
inductive argument to construct a long time surgically modified solution sat-
isfying the pinching assumption and the canonical neighborhood assumption
(with accuracy ε).

Start with a (smooth) maximal solution g(t), t ∈ [0, T ), to the Ricci flow
on the compact, oriented three-manifold M with normalized initial metric.
By the Hamilton-Ivey pinching estimate and Theorem 4.13 on the structure
of singularity, we see that the maximal solution g(t) satisfies the pinching
assumption and the canonical neighborhood assumption on the maximal
time interval [0, T ). If T = +∞, we have the desired long time solution.
Thus, without loss of generality, we may assume T < +∞ and hence the
solution goes singular at time T .

Suppose that we have a surgically modified solution on [0, T ) (with
T < +∞ and with the normalized metric as initial data) which satisfies
the pinching assumption and the canonical neighborhood assumption (with
accuracy ε), becomes singular at time T , and has only a finite number of
surgery times on [0, T ). Let Ω denote the set of all points in M where the
curvature stays bounded as t → T . Then the solution g(t) has a smooth limit
ḡ, defined on Ω, as t → T .

For some δ > 0 to be chosen much smaller than ε, we let ρ = δr(T ), where
r(t) is the positive nonincreasing function in the definition of the canonical
neighborhood assumption. We then consider the corresponding compact set

Ωρ = {x ∈ Ω | R̄(x) ≤ ρ−2},

where R̄ is the scalar curvature of ḡ.



“Ch03” — 2008/4/21 — 13:10 — page 92 — #46
�

�

�

�

�

�

�

�

92 H.-D. CAO, B.-L. CHEN, AND X.-P. ZHU

If Ωρ is empty, then the manifold (near the maximal time T ) is entirely
covered by ε-necks, ε-caps and compact components with positive curvature.
As a consequence, the manifold is diffeomorphic to the union of a finite
number of copies of S3, or metric quotients of the round S3, or S2 × S1, or a
connected sum of them. Thus when Ωρ is empty, the procedure stops here,
and we say the solution becomes extinct.

We now assume Ωρ is not empty. As was explained before, we only need
to consider those components Ωj , 1 ≤ j ≤m, of Ω which contain points of
Ωρ. We will perform surgical procedures, which have been roughly described
before, by finding an ε-neck in all horns of Ωj , 1 ≤ j ≤m, and then cutting
it along the middle two-sphere, removing the horn-shaped end, and gluing
back a cap.

However, in order to maintain the pinching assumption and the canonical
neighborhood assumption with the same accuracy after surgery, we will need
to find sufficiently “fine” necks in the ε-horns and to glue sufficiently “fine”
caps. Note that δ > 0 is to be chosen much smaller than ε > 0.

Actually, one can show (due to Perelman [81], see Lemma 7.3.2 [14])
that in every ε-horn of Ωj , 1 ≤ j ≤m, there exists a δ-neck with its radius
depending only on δ and r(T ) . This gives us the “fine” necks in the ε-horns.

To construct “fine” caps, we consider the semi-infinite standard round
cylinder N0 = S2 × (−∞, 4) with the metric g0 of scalar curvature 1. Denote
by z the coordinate of the second factor (−∞, 4). Let f be a smooth
nondecreasing convex function on (−∞, 4) defined by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f(z) = 0, z ≤ 0,

f(z) = ce− P
z , z ∈ (0, 3],

f(z) is strictly convex on z ∈ [3, 3.9],

f(z) = − 1
2 log(16 − z2), z ∈ [3.9, 4),

where the (small) constant c > 0 and (big) constant P > 0 will be determined
later (see Figure 5).

Let us replace the standard metric g0 on the portion S2 × [0, 4) of the
semi-infinite cylinder by the conformal change e−2fg0. Then the resulting
metric ĝ is smoothly defined on R3 obtained by adding a point to S2 ×
(−∞, 4) at z = 4. We denote by C(c, P ) = (R3, ĝ), and call it a standard
capped infinite cylinder (see Figure 6). Clearly C(c, P ) has nonnegative
sectional curvature and positive scalar curvature everywhere.

As a side remark, one might wonder whether we should also cut off all
those ε-tubes and ε-caps in the surgery procedure. However, in general one
may not be able to find a “fine” neck in an ε-tube or an ε-cap, and surgeries
at “rough” ε-necks will certainly lose some accuracy. If one performs the
surgeries at the necks with some fixed accuracy ε on the high curvature
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z

f(z)

Figure 5. The function f(z).

Figure 6. Standard capped infinite cylinder.

region at each surgery time, then it is possible that the errors of surgeries
may accumulate to a certain amount so that at some later time one cannot
recognize the structure of very high curvature region. This prevents us to
carry out the whole process in finite time with finite steps. This is the reason
why we will only perform the surgeries at ε-horns.

We can now perform Hamilton’s geometric surgery procedure as fol-
lows. Take an ε-horn with boundary in Ωρ and take a δ-neck N of radius
h, 0 < h < δρ, in the ε-horn. By definition, (N, h−2ḡ) is δ-close (in the C [δ−1]

topology) to the standard round neck S2 × I of scalar curvature 1 with
I = (−δ−1, δ−1). The parameter z ∈ I induces a function on the δ-neck N .

Let us cut the δ-neck N along the middle (topological) two-sphere
N

⋂
{z = 0}. Without loss of generality, we may assume that the right hand

half portion N
⋂

{z ≥ 0} is contained in the horn-shaped end. Let ϕ be a
smooth bump function with ϕ = 1 for z ≤ 2, and ϕ = 0 for z ≥ 3. Construct
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a new metric g̃ on a (topological) three-ball B3 as

g̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ḡ, z = 0,

e−2f ḡ, z ∈ [0, 2],

ϕe−2f ḡ + (1 − ϕ)e−2fh2g0, z ∈ [2, 3],

h2e−2fg0, z ∈ [3, 4].

The surgery, called a δ-cutoff surgery, is to replace the horn-shaped end
by the cap (B3, g̃) (see Figure 7).

We remark that this type of surgery is topologically trivial. But it is
geometrically significant: after suitable adjusting the parameters c, P and
δ, the pinching assumption will survive under the surgeries. Indeed, we can
prove

Theorem 5.1 (see Lemma 7.3.4 in [14]). There are universal positive
constants δ0, c0 and P0 such that if one takes a δ-cutoff surgery at a δ-neck of
radius h at time T with δ ≤ δ0 and h−2 ≥ 2e2 log(1+T ), then one can choose
c = c0 and P = P0 in the definition of f(z) such that after the surgery, the
pinching condition

R̃ ≥ (−ν̃)[log(−ν̃) + log(1 + T ) − 3]

ε-horn
��

δ-neck
��

the gluing cap
��

Figure 7. δ-cutoff surgery.
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still holds whenever ν̃ < 0. Here R̃ is the scalar curvature of g̃ and ν̃ is the
least eigenvalue of the curvature operator of g̃.

Define the positive function δ̄(t) on [0, +∞) by

δ̄(t) = min
{

1
2e2 log(1 + t)

, δ0

}
.

From now on we will always assume 0 < δ < δ̄(t) for any δ-cutoff surgery at
a time t > 0 and take c = c0 and P = P0 so that the pinching assumption is
preserved under the surgeries at T . After performing the δ-cutoff surgeries
for all Ωj , 1 ≤ j ≤m, we obtain the compact (without boundary), orientable
three-manifolds Ω̄j , 1 ≤ j ≤m. With these new compact manifolds as initial
data, we can continue the solution under the Ricci flow until it becomes
singular again at some later time T ′ > T . By the Hamilton-Ivey estimate
(Theorem 1.7), we see that the solution still satisfies the pinching assumption
on the extended time interval [0, T ′).

By dilation and Theorem 4.13 on the structure of singularity, there
always exists a nonincreasing positive function r = r′(t), defined on [0, +∞),
such that the canonical neighborhood assumption (with accuracy ε) holds
on the extended time interval [0, T ′) with the positive function r = r′(t).
Nevertheless, in order to prevent the surgery times from accumulating, the
key is to choose the nonincreasing positive functions r(t) uniformly. By a
further restriction on the positive function δ̄(t) we can verify the canonical
neighborhood assumption with a uniform r(t).

Theorem 5.2 (Justification of the canonical neighborhood assumption
[81]). Given any small ε > 0, there exist decreasing sequences 0 < r̃j < ε and
0 < δ̃j < ε2, j = 1, 2, . . ., with the following property. Define the positive func-
tion δ̃(t) on [0, +∞) by δ̃(t) = δ̃j for t ∈ [(j − 1)ε2, jε2). Suppose there is a
surgically modified solution, defined on [0, T ) with T < +∞, to the Ricci flow
which satisfies the following:

(1) it starts on a compact orientable three-manifold with normalized
initial metric, and

(2) it has only a finite number of surgeries such that each surgery at a
time t ∈ (0, T ) is a δ(t)-cutoff surgery with

0 < δ(t) ≤ min{δ̃(t), δ̄(t)}.

Then on each time interval [(j − 1)ε2, jε2]
⋂

[0, T ), (j = 1, 2, . . .), the solu-
tion satisfies the canonical neighborhood assumption (with accuracy ε) with
r = r̃j.

This result was first given by Perelman in [81]. It extends the singularity
structure theorem (Theorem 4.13) for smooth solutions to surgically modi-
fied solutions. However, when one tries to adapt the arguments of the smooth
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case to the surgical case, they will encounter several difficulties: how to gen-
eralize the non local collapsing theorem of Perelman to surgical solutions to
get the local injectivity radius bound; how to apply Hamilton’s compactness
theorem to surgically modified solutions; how to extend the rescaling limits
backward in time without touching the surgical regions. Below we will give
a brief description of the proof.

The proof is by induction: having constructed our sequences for
1 ≤ j ≤m, we make one more step, defining r̃m+1 and δ̃m+1. We follow a
very clever idea of Perelman [81] by redefining δ̃m = δ̃m+1 in order to push
the surgical regions to infinity in space.

We argue by contradiction. Suppose for some sequences of positive num-
bers rα → 0 and δ̃αβ → 0, there exist sequences of solutions gαβ

ij to the Ricci
flow with surgery, with a compact orientable normalized three-manifold as
initial data, so that

(i) each δ-cutoff at time t ∈ [(m−1)ε2, (m+1)ε2] satisfies δ ≤ δ̃αβ ; and
(ii) the solutions satisfy the statement of the proposition on [0, mε2],

but violate the canonical neighborhood assumption (with accuracy
ε) with r = rα on [mε2, (m + 1)ε2].

For each solution gαβ
ij , we choose t̄αβ to be the nearly first time for

which the canonical neighborhood assumption (with accuracy ε) is violated
at some (x̄αβ , t̄αβ) but the canonical neighborhood assumption with accuracy
parameter 2ε does hold on t ∈ [mε2, t̄αβ ].

Let g̃αβ
ij be the rescaled solutions around (x̄αβ , t̄αβ) with factors

R(x̄αβ , t̄αβ) (≥(rα)−2 → +∞ as α → +∞) and shift t̄αβ to zero. We hope to
take a subsequential limit of the rescaled solutions as α, β → ∞ and show
that the limit is an orientable ancient κ-solution, which will give the desired
contradiction.

To do so, we first need to get a uniform lower bound for the injectivity
radii of the rescaled sequence g̃αβ

ij at the marking points (x̄αβ , t̄αβ). Based on
the fact that the canonical neighborhood assumption with accuracy param-
eter 2ε holds for t ∈ [mε2, t̄αβ ], we appeal the following lemma to show that
the (unscaled) sequence gαβ

ij is κ-noncollapsed for some κ > 0 independent
of α, β.

Lemma 5.3 (Perelman [81], see also Lemma 7.4.2 in [14]). Given ε > 0,
suppose we have constructed the sequences satisfying the proposition for
1 ≤ j ≤ l (for some positive integer l). Then there exists κ > 0, such that for
any r, 0 < r < ε, one can find δ̃ = δ̃(r, ε), 0 < δ̃ < ε2, which may also depend
on the already constructed sequences, with the following property. Suppose
we have a solution with a compact oriented normalized three-manifold as
initial data, to the Ricci flow with finite number of surgeries on a time
interval [0, T̄ ] with lε2 ≤ T̄ < (l + 1)ε2, satisfying the assumptions and the
conclusions of Proposition 7.4.1 on [0, lε2), and the canonical neighborhood
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assumption (with accuracy ε) with r on [lε2, T̄ ], as well as 0 < δ(t) ≤ δ̃ for
any δ-cutoff surgery with δ = δ(t) at a time t ∈ [(l − 1)ε2, T̄ ]. Then the
solution is κ-noncollapsing on [0, T̄ ] for all scales less than ε.

The major observation in the proof of the lemma is that the space-time
curves near the region of surgery carry large reduced distance, so one can
find suitable surgically unaffected cone-like regions and to apply Perelman’s
Jacobian comparison theorem (formula (3.15)) there as in the proof Theorem
3.9. The universal noncollapsing property of ancient κ-solutions is substan-
tially used in this proof. We have to mention that the noncollapsing constant
κ obtained in such a way does not depend on the canonical neighborhood
parameter r in [(l − 1)ε2, T̄ ]. This is the key point of the lemma2.

The uniform noncollapsing estimate guarantees the desired injectivity
radius bound for the rescaled sequence g̃αβ

ij .
Next we need to get a uniform curvature bound for the rescaled sequence

g̃αβ
ij on compact subsets around the marked points x̄αβ . Since the (unscaled)

solutions satisfy the canonical neighborhood assumption with accuracy
parameter 2ε on [mε2, t̄αβ ], we can use the gradient estimates in the canon-
ical neighborhood assumption to get a uniform curvature estimate for the
rescaled solutions g̃αβ

ij in some small space-time neighborhoods of (x̄αβ , t̄αβ).
The sizes of these neighborhoods in space (at the new time zero) are uni-
form, but the time interval may vary due to the surgeries. If the time interval
for the solution is too short, one can not apply Shi’s derivative estimates to
obtain uniform higher derivatives estimates. This prevent us from applying
Hamilton’s compactness theorem, which requires a uniform time interval for
all the solutions in the sequence, to take a limit for the surgically modified
rescaled solutions. To overcome this difficulty, in [14] and [25], the authors
established three time-extension results:

The first assertion says that if we have curvature estimates for the renor-
malized solutions on a box B̃0(x̄, A) × [−b, 0], then the solution can be
extended to a larger time interval.

Assertion 1. For arbitrarily fixed α, 0 < A <+∞, 1 ≤C <+∞ and
0 ≤B < 1

2ε2(rα)−2 − 1
8η−1C−1, there is a β0 = β0(ε, A, B, C) (independent

of α) such that if β ≥β0 and the rescaled solution g̃αβ
ij on the ball B̃0(x̄, A)

is defined on a time interval [−b, 0] with 0 ≤ b ≤B and the scalar curvature
satisfies

R̃(x, t) ≤C, on B̃0(x̄, A) × [−b, 0],

then the rescaled solution g̃αβ
ij on the ball B̃0(x̄, A) is also defined on the

extended time interval [−b − 1
8η−1C−1, 0].

2We have also learned the very recent works of Ye [105] and Zhang [108] on how to
obtain a uniform Sobolev inequality, which is independent of the number of surgeries, and
use it to derive κ-noncollapsing for surgically modified Ricci flow.
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If the solution cannot be defined on the larger interval [−b− 1
8η−1C−1, 0],

it must hit the surgery region. Since the surgery was done on the δ-neck, the
solution on the surgery region is close to a standard solution by the unique-
ness theorem of Ricci flow [24]. For standard solutions, we have canonical
neighborhood decompositions. Note that once the solution is defined on
B̃0(x̄, A) for a subinterval [−b − ν, 0] of [−b − 1

8η−1C−1, 0], the curvature
bound on this region follows directly from the gradient estimate on canonical
neighborhoods with accuracy parameter 2ε. This curvature bound guaran-
tees that the solution near the point x̄ is close to a standard solution until
the time 0. Since the canonical neighborhood assumption with accuracy
parameter ε is violated at (x̄, t̄) by assumption, this gives a contradiction.

Assertion 2. For arbitrarily fixed α, 0 < A <+∞, 1 ≤C <+∞ and
0 ≤B < 1

2ε2(rα)−2 − 1
50η−1, there is a β0 = β0(ε, A, B, C) (independent of

α) such that if β ≥β0 and the rescaled solution g̃αβ
ij on the ball B̃0(x̄, A) is

defined on a time interval [−b + ε′, 0] with 0 < b ≤B and 0 < ε′ < 1
50η−1 and

the scalar curvature satisfies

R̃(x, t) ≤C on B̃0(x̄, A) × [−b + ε′, 0],

and there is a point y ∈ B̃0(x̄, A) such that R̃(y, −b+ε′) ≤ 3
2 , then the rescaled

solution g̃αβ
ij at y is also defined on the extended time interval [−b− 1

50η−1, 0]
and satisfies the estimate

R̃(y, t) ≤ 15
for t ∈ [−b − 1

50η−1,−b + ε′].
Assertion 2 follows the same philosophy as in Assertion 1. Once we have

the curvature estimates, and the solution hits the surgery, it must maintain
the shape of standard solution until the time 0 by the uniqueness theorem
in [24]. In practice, the point y will come from an almost minimal value of
the scalar curvature, so its curvature is uniformly bounded.

The following Assertion 3 is based on the observation that the standard
solution satisfies R(x1, t) ≤D′′R(x2, t) for any t ∈ [0, 1

2 ] and any two points
x1, x2, where D′′ is a universal constant.

Assertion 3. For arbitrarily fixed α, 0 < A <+∞, 1 ≤C <+∞ , there is a
β0 = β0(ε, AC

1
2 ) such that if any point (y0, t0) with 0 ≤ − t0 < 1

2ε2(rα)−2 −
1
8η−1C−1 of the rescaled solution g̃αβ

ij for β ≥β0 satisfies R̃(y0, t0) ≤C ,
then either y0 can be defined at least on [t0 − 1

16η−1C−1, t0] and the scalar
curvature satisfies

R̃(y0, t) ≤ 10C for t ∈ [t0 − 1
16

η−1C−1, t0],

or we have
R̃(x1, t0) ≤ 2D′′R̃(x2, t0)

for any two points x1, x2 ∈ B̃t0(y0, A), where D′′ is the above universal
constant.
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Based on these three time-extension results, we can adapt the arguments
in the proof of Theorem 4.13 on the structure of singularity to the surgically
modified solutions.

We next argue as in the second step of the proof of Theorem 4.13 to show
that the curvatures of the rescaled solutions g̃αmβm at new time zero (after
shifting) stay uniformly bounded at bounded distances from x̄ as m → ∞.
More precisely, we will prove the following assertion:

Assertion 4. For the rescaled solutions g̃αmβm

ij , we have that for any L > 0,
there are constants C(L) > 0 and m(L) such that for all m ≥m(L) the
rescaled solutions g̃αmβm

ij satisfy

(i) R̃(x, 0) ≤C(L) for all points x with d̃0(x, x̄) ≤L;
(ii) the ball B̃0(x̄, L) is defined at least on the time interval

[− 1
16η−1C(L)−1, 0].

For all ρ > 0, set

M(ρ) = sup{R̃(x, 0) | d̃0(x, x̄) ≤ ρ in the rescaled solutions g̃αmβm

ij }

and
ρ0 = sup{ρ > 0 |M(ρ) < +∞}.

Note that the gradient estimate implies that ρ0 > 0. For (i), it suffices to
prove ρ0 = +∞.

Suppose ρ0 < +∞. By Assertion 3 or Assertion 1, we have for any
0 < ρ < ρ0, the rescaled solutions on the balls B̃0(x̄, ρ) are defined on the
time interval [− 1

16η−1M(ρ)−1, 0] for all large m. Once the solution is defined
on this time interval, by gradient estimate and Shi’s derivative estimate,
we know that the covariant derivatives of the curvatures of all order on
B̃0(x̄, ρ− 1

m)×[− 1
32η−1M(ρ)−1, 0] are also uniformly bounded. Hence Hamil-

ton’s compactness theorem is applicable now. Then we can apply the similar
argument as in Step 2 of the proof of Theorem 4.13 to prove Assertion 4.

For any subsequence (αm, βm) of (α, β) with rαm → 0 and δ̃αmβm → 0
as m → ∞, by Assertion 4, the κ-noncollapsing and Hamilton’s compact-
ness theorem, we can extract a C∞

loc convergent subsequence of g̃αmβm

ij over
some space-time open subsets containing t = 0. As in the proof of Singularity
Structure Theorem 4.13, we can use Lemma 4.14 to show any such limit has
bounded curvature at t = 0.

Choose αm, βm → ∞ so that rαm → 0, δ̃αmβm → 0, and Assertions 1-3
hold with α = αm, β = βm for all A ∈ {p/q | p, q = 1, 2, . . . , m}, and B, C ∈
{1, 2, . . . , m}. By Assertion 4, we may assume the rescaled solutions g̃αmβm

ij

converge in C∞
loc topology at the time t = 0. Since the curvature of the limit

at t = 0 is bounded, it follows from Assertion 1 and the choice of the sequence
(αm, βm) that the limiting (M∞, g̃∞

ij (·, t)) is defined at least on a backward
time interval [−a, 0] for some positive constant a and is a smooth solution
to the Ricci flow there.
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We can further extend the limit backward in time to infinity to get an
ancient κ-solution. We omit the details here and refer the reader to consult
[14] and [25]. The idea of time extension is used throughout our proof. We
emphasize that, comparing to the no surgery case, this is a crucial point.

Summing up, for any ε > 0, there exist nonincreasing positive functions
δ̃(t) and r̃(t), defined on [0, +∞), such that for an arbitrarily given positive
function δ(t) with δ(t) < δ̃(t) on [0, +∞), the Ricci flow with surgery has a
solution on [0, Tmax) obtained by evolving the Ricci flow and by performing
δ-cutoff surgeries at a sequence of times 0 < t1 < t2 < · · · < ti < · · · < Tmax,
with δ(ti) ≤ δ ≤ δ̃(ti) at each time ti, so that the pinching assumption and
the canonical neighborhood assumption (with accuracy ε) with r = r̃(t) are
satisfied. (At this moment we still do not know whether the surgery times
ti are discrete).

Each δ-cutoff surgery at time ti cuts down the volume at least at an
amount depending only on δ(ti) and r̃(ti), while the volume of the surgically
modified solution can be bounded by

V (t) ≤V (0)e−Rmin(0)t.

Thus the surgery times ti cannot accumulate in any finite interval. When
the solution becomes extinct at some finite time Tmax, the solution at a time
slightly before Tmax is entirely covered by canonical neighborhoods and then
the initial manifold is diffeomorphic to a connected sum of a finite copies of
S2 × S1 and S3/Γ (the metric quotients of round three-sphere). So we have
the following long-time existence result, which was proposed by Perelman
in [81].

Theorem 5.4 (Long-time Existence Theorem). For any given small con-
stant ε > 0, there exist nonincreasing (continuous) positive functions δ̃(t) and
r̃(t), defined on [0, +∞), such that for any arbitrarily given (continuous) pos-
itive function δ(t) with δ(t) ≤ δ̃(t) on [0, +∞), the Ricci flow with surgery,
with an arbitrarily given compact orientable normalized three-manifold as
initial data, has the following property: either

(i) it is defined on a finite interval [0, Tmax) and obtained by evolving
the Ricci flow and by performing a finite number of cutoff surgeries,
with each δ-cutoff at a time t ∈ (0, Tmax) having δ = δ(t), so that
the solution becomes extinct at Tmax, and the initial manifold is
diffeomorphic to a connected sum of a finite copies of S2 × S1 and
S3/Γ (the metric quotients of round three-sphere) ; or

(ii) it is defined on [0, +∞) and obtained by evolving the Ricci flow
and by performing at most a countably many cutoff surgeries, with
each δ-cutoff at a time t ∈ [0, +∞) having δ = δ(t), so that the
pinching assumption and the canonical neighborhood assumption
(with accuracy ε) with r = r̃(t) are satisfied, and there exist at most
a finite number of surgeries on every finite time interval.
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5.4. Topological Implications. As the first consequence of the above
long-time existence result, one can obtain a complete classification to com-
pact three-manifolds with nonnegative scalar curvature. Indeed, if the initial
manifold has positive scalar curvature, then the solution becomes extinct in
finite time and the manifold is either flat or diffeomorphic to a connected
sum of a finite number of copies of S2 × S1 and S3/Γ (the metric quotients
of round three-spheres). This improves the well-known topological classi-
fication of Schoen-Yau [89] for compact three-manifolds with nonnegative
scalar curvature.

The famous Poincar´e conjecture states that any simply connected
compact three-manifold (without boundary) is homeomorphic to the three-
sphere. Recent works of Perelman [82] (see also detailed exposition given
in Morgan-Tian [70]) and Colding-Minicozzi [30] proved that any surgi-
cally modified solution to the Ricci flow on a simply connected compact
three-manifold must be extinct in finite time. Thus The combination of
the assertion (i) of the above long-time theorem 5.4 and the finite extinc-
tion result of Perelman and Colding-Minicozzi gives a complete proof to the
Poincaré conjecture.

The idea of proving the extinction result is adapted from Hamilton [49]
where the argument was used to show the incompressibility of the boundary
tori of hyperbolic pieces. This argument for the finite time extinction can
be roughly described as follows. Suppose there would exist a surgical solu-
tion gij(t) on the infinite time interval [0, +∞). Since the manifold is simply
connected, a well-known result of J. P. Serre implies some higher homotopic
group of the manifold is nontrivial. Then one can use the nontrivial homo-
topic group to construct a minimal surface Σ(t) for each t ∈ [0, +∞). Denote
by A(t) the area of Σ(t). By an argument of Schoen-Yau [89] of using the
Gauss-Bonnet formula, one can bound the the time derivative of the area
function

dA(t)
dt

≤ −f(t)

for some positive function f(t) which is nonintegrable on [0, +∞). Then it
gives the desired contradiction.

To conclude this section, we mention the application of the Ricci flow
with surgery to the classification of four-manifolds with positive isotropic
curvature. Recall that a Riemannian four-manifold is said to have positive
isotropic curvature if for every orthonormal four-frame the curvature tensor
satisfies

R1313 + R1414 + R2323 + R2424 > 2R1234.

An incompressible space form N3 in a four-manifold M4 is a three-
dimensional submanifold diffeomorphic to S3/Γ (the quotient of the three-
sphere by a group of isometries without fixed point) such that the fundamen-
tal group π1(N3) injects into π1(M4). The space form is said to be essential
unless Γ = {1}, or Γ = Z2 and the normal bundle is non-orientable. In [25],
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the last two authors obtained the following long-time existence result for the
Ricci flow with surgery for a class of four-manifolds.

Theorem 5.5 (Chen-Zhu [25]). Let M4 be a compact four-manifold
with no essential incompressible space-form and with a metric gij of
positive isotropic curvature. Then we have a finite collection of smooth solu-
tions g

(k)
ij (t), k = 0, 1, . . . , m, to the Ricci flow, defined on M4

k × [tk, tk+1),

(0 = t0 < · · · < tm+1) with M4
0 = M4 and g

(0)
ij (t0) = gij, which go singular as

t → tk+1, such that the following properties hold:

(i) for each k = 0, 1, . . . , m − 1, the compact (possible disconnected)
four-manifold M4

k contains an open set Ωk such that the solution
g
(k)
ij (t) can be smoothly extended to t = tk+1 over Ωk;

(ii) for each k = 0, 1, . . . , m − 1, (Ωk, g
(k)
ij (tk+1)) and (M4

k+1, g
(k+1)
ij

(tk+1)) contain compact (possible disconnected) four-dimensional
submanifolds with smooth boundary, which are isometric and then
can be denoted by N4

k ;
(iii) for each k = 0, 1, . . . , m − 1, M4

k \ N4
k consists of a finite number

of disjoint pieces diffeomorphic to S3 × I, B4 or RP4 \ B4, while
M4

k+1\N4
k consists of a finite number of disjoint pieces diffeomophic

to B4;
(iv) for k = m, M4

m is diffeomorphic to the disjoint union of a finite
number of S4, or RP4, or S3 × S1, or S3×̃S1, or RP4#RP4.

As a direct consequence, it gives a complete proof to the following
classification result of Hamilton [48].

Corollary 5.6. A compact four-manifold with no essential incom-
pressible space-form and with a metric of positive isotropic curvature is
diffeomorphic to S4, or RP4, or S3 × S1, or S3×̃S1,or a connected sum of
them.

6. Geometrization of Three-manifolds

In the late 70’s and early 80’s, Thurston [95, 96, 97] proved a number
of remarkable results on the existence of geometric structures on three-
manifolds, especially the celebrated Haken manifold theorem. These results
motivated him to formulate a profound conjecture

Thurston’s Geometrization Conjecture Let M be a compact, orientable
and prime three-manifold. Then there is an embedding of a finite number
of disjoint unions, possibly empty, of incompressible two-tori

∐
i T

2
i ⊂ M

such that every component of the complement admits a locally homogeneous
Riemannian metric of finite volume.
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In dimension three, every locally homogeneous manifold with finite vol-
ume is modeled on one of the following eight homogeneous manifolds (see
for example Theorem 3.8.4 of [98]):

(1) S3, the round three-sphere;
(2) R3, the Euclidean space;
(3) H3, the standard hyperbolic space;
(4) S2 × R;
(5) H2 × R;
(6) Nil, the three-dimensional nilpotent Heisenberg group (consisting

of upper triangular 3 × 3 matrices with diagonal entries 1);
(7) P̃SL(2, R), the universal cover of the unit sphere bundle of H2;
(8) Sol, the three-dimensional solvable Lie group.

According to Kneser [58] and Milnor [68], every compact orientable three-
manifold admits a unique decomposition as a finite connected sum of
orientable prime three-manifolds. Thus the geometrization conjecture is
a complete classification to three-dimensional manifolds. In particular,
the Poincaré conjecture can be deduced from Thurston’s geometrization
conjecture. Indeed, suppose that we have a compact simply connected three-
manifold that satisfies the conclusion of the geometrization conjecture. If it
were not diffeomorphic to the three-sphere S3, there would be a prime factor
in the prime decomposition of the manifold. Since the prime factor still has a
vanishing fundamental group, the torus decomposition (by Jaco-Shalen [53]
and Johannsen [54]) of the prime factor in the geometrization conjecture
must be trivial. Thus the prime factor is a compact homogeneous manifold
model. From the list of above eight models, we see that the only compact
three-dimensional model is S3. This is a contradiction. Consequently, the
compact simply connected three-manifold is diffeomorphic to S3.

The approach to prove the geometrization conjecture via the Ricci flow is
to analyze long time behavior of surgically modified solutions. The argument
of Perelman in [81] for the long-time behavior of surgical solutions is basi-
cally along the line given by Hamilton [49], in which Hamilton obtained
the geometrization for a special class of solutions to the Ricci flow on
three-manifolds, the so called nonsingular solutions. In the following, we
present the long-time behavior analysis and sketch the proof of Thurston’s
geometrization conjecture.

Since we already have a complete (topological) classification to compact
three-manifolds with nonnegative scalar curvature, we now assume that our
initial manifold does not admit any metric with nonnegative scalar curva-
ture and that once we get a compact component with nonnegative scalar
curvature, it is immediately removed. Also by Theorem 5.4 (i), we only need
to consider those solutions to the Ricci flow with surgery which exist for all
time t ≥ 0.

Let gij(t), 0 ≤ t < +∞, be a solution to the Ricci flow with δ-cutoff
surgeries, constructed by the above long-time existence theorem (Theorem
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5.2) with normalized initial data. Let 0 = t0 < t1 < t2 < · · · < tk < · · · be the
surgery times. On each time interval (tk−1, tk), the minimum of the scalar
curvature Rmin(t) at time t satisfies the differential inequality

d

dt
Rmin(t) ≥ 2

3
R2

min(t)

for t ∈ (tk−1, tk), k = 1, 2, . . .. Since the surgeries occur only on regions of
very large scalar curvature, it follows that

Rmin(t) ≥ − 3
2

· 1
t + 3

2

for all t ≥ 0. Meanwhile, on each time interval (tk−1, tk), the volume V
satisfies the evolution equation

d

dt
V = −

∫
RdV

and hence
d

dt
V ≤ 3

2
· 1
(t + 3

2)
V.

Since the cutoff surgeries do not increase volume, the function V (t)(t+ 3
2)− 3

2

is nonincreasing on [0, +∞). and there holds

V (t)

(t + 3
2)

3
2

≤ V (0)

(3
2)

3
2

exp

{
−

∫ t

0

(
Rmin(t) +

3
2(t + 3

2)

)
dt

−
∫ t

0

1
V

∫
M

(R − Rmin(t))dV dt

}
for all t > 0. This inequality implies that whenever we have a rescaling limit
along a sequence times tα → ∞ and with factors (tα)−1, the limit must be a
hyperbolic manifold. Then by extending the elliptic type estimate in Propo-
sition 4.11 to surgical solutions, one will be able to obtain the following
important thick-thin decomposition (see Figure 8) for surgically modified
solutions.

Theorem 6.1 (Thick-thin decomposition theorem). For any w > 0 and
0 < ε ≤ 1

2w, there exists a positive constant ρ = ρ(w, ε) ≤ 1 with the follow-
ing property. Suppose gij(t), t ∈ [0, +∞), is a surgically modified solution
constructed by the above long-time existence theorem. Then for any arbi-
trarily fixed ξ > 0, for t large enough, the manifold Mt at time t admits a
decomposition

Mt = Mthin(w, t) ∪ Mthick(w, t)

with the following properties:
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�
thick part

(hyperbolic piece)

�

thick part
(hyperbolic piece)

�	
thick part

(hyperbolic piece)

�	
thin part

��
thin part

Figure 8. Thick-thin decomposition.

(a) For every x ∈ Mthin(w, t), there exists some r = r(x, t) > 0, with
0 < r

√
t < ρ

√
t, such that

Rm ≥ −(r
√

t)−2 on Bt(x, r
√

t), and

V olt(Bt(x, r
√

t)) < w(r
√

t)3;

(b) For every x ∈ Mthick(w, t), we have

|2tRij + gij |< ξ on Bt(x, ρ
√

t), and

V olt(Bt(x, ρ
√

t)) ≥ 1
10

w(ρ
√

t)3.

Moreover, if we take any sequence tα → +∞ and points xα ∈ Mthick(w, tα),
then a subsequence of the rescaled metrics of gij(tα) around xα with factor
(tα)−1 converge smoothly to a complete hyperbolic manifold of finite volume
with constant sectional curvature −1

4 .

This thick-thin decomposition theorem was implicitly given by Perelman
in [81] without any restriction on the parameters ε and w. The above weaker
version with the restriction is taken from [14]. The difference is because
of our difficulty in understanding the original argument of Perelman [81].
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Fortunately, this weaker version still allows us to complete the proof of the
geometrization conjecture.

Without loss of generality, we may further assume that the initial man-
ifold M is irreducible. By our surgery procedures, the solution manifold Mt

at each time t consists of a finite number of components where one of the
components, called the essential component and denoted by M

(1)
t , is diffeo-

morphic to the initial manifold M while the rest are diffeomorphic to the
3-sphere S3.

Based on the thick-thin decomposition theorem, we can modify the
arguments of Hamilton in [49] to obtain the following long-time behavior
result.

Theorem 6.2 (Long-time Behavior Theorem). Let w > 0 and 0 < ε ≤ 1
2w

be any small positive constants and let (Mt, gij(t)), 0 < t < +∞, be a solution
to the Ricci flow with surgery constructed by the long-time existence theorem.
Then one of the following holds: either

(i) for all sufficiently large t, we have Mt = Mthin(w, t); or
(ii) there exists a sequence of times tα → +∞ such that the scalings of

the essential component (M (1)
tα , gij(tα)), with factor (tα)−1, converge

in the C∞ topology to a hyperbolic metric on the initial compact
manifold M with constant sectional curvature −1

4 ; or
(iii) we can find a finite collection of complete noncompact hyperbolic

three-manifolds H1, . . . ,Hm, of finite volume, and compact sub-
sets K1, . . . , Km of H1, . . . ,Hm respectively obtained by truncating
each cusp of the hyperbolic manifolds along constant mean curva-
ture torus of small area, and for all t beyond some time T < +∞
we can find diffeomorphisms ϕl, 1 ≤ l ≤m, of Kl into Mt so that as
long as t is sufficiently large, the metric t−1ϕ∗

l (t)gij(t) is as close to
the hyperbolic metric as we like on the compact sets K1, . . . , Km;
moreover, the complement Mt\(ϕ1(K1) ∪ · · · ∪ ϕm(Km)) is con-
tained in the thin part Mthin(w, t), and the boundary tori of each
Kl are incompressible in the sense that each ϕl injects π1(∂Kl) into
π1(Mt).

If case (ii) holds, then it is clear that the initial manifold M is geometriz-
able. While if case (iii) holds, then it follows from Thurston’s theorem on
Haken manifolds that the initial manifold M is also geometrizable. Thus it
remains to consider case (i). For case (i), we will appeal to the following
collapsing result, which was first announced (in a more general version) by
Perelman [81] and proved by Shioya-Yamaguchi [92].

Theorem 6.3 (Collapsing Theorem). Suppose (Mα, gα
ij) is a sequence of

compact orientable three-manifolds without boundary, and wα → 0. Assume
that for each point x ∈ Mα there exists a radius ρ = ρα(x), not exceeding the
diameter of Mα, such that the volume of the ball B(x, ρ) in the metric gα

ij is
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at most wαρ3 and the sectional curvature on B(x, ρ) is at least −ρ−2. Then
Mα, for sufficiently large α, are diffeomorphic to graph manifolds.

Now the proof of the Thurston geometrization conjecture can be
completed in the following way.

Let M be a compact, orientable and irreducible three-manifold. Arbi-
trarily given a (normalized) Riemannian metric on the manifold M , we
use it as initial data for the Ricci flow. Take an arbitrarily sequence of
small positive constants wα → 0 as α → +∞. For each fixed α, we set
ε = wα/2 > 0. Then we apply the long-time existence theorem (Theorem 5.2)
to get a sequence of surgically modified solutions (Mα

t , gα
ij(t)) on maximal

time intervals [0, Tα
max) satisfying the pinching assumption and the canonical

assumption (with the accuracy parameter ε = wα/2). We may assume that
the maximal time Tα

max = +∞ for all α and the surgical solutions (Mα
t , gα

ij(t))
always satisfy assertion (i) of the long-time behavior theorem. That is, for
each α, Mα

t = Mthin(wα, t) when t is sufficiently large.
Clearly we only need to consider the essential component (Mα

t )(1). We
divide the discussion into two cases:

(1) there is a positive constant 1< C <+∞ such that for each α there
is a sufficiently large time tα > 0 such that

r(x, tα)
√

tα < C · diam((Mα
tα)(1))

for all x ∈ (Mα
tα)(1) ⊂ Mthin(wα, tα);

(2) there are a subsequence αk and sequences of positive constants
Ck → +∞ and Tk < +∞ such that for each t ≥Tk, we have

r(x(t), t)
√

t ≥Ck · diam((Mαk
t )(1))

for some x(t) ∈ (Mαk
t )(1), k = 1, 2, . . . .

In case (1), we apply the collapsing theorem of Shioya-Yamaguchi to con-
clude that (Mα

tα)(1) are graph manifolds. So the initial manifold M is
geometrizable.

For case (2), if there are subsequences αk (still denoted by αk) and
tk ∈ (Tk, +∞) such that

V oltk((Mαk
tk

)(1)) < w′
k(diam((Mαk

tk
)(1)))3

for some sequence w′
k → 0, then we can apply the collapsing theorem again

to conclude that (Mαk
tk

)(1) are diffeomorphic to graph manifolds. On the
other hand, if there is a positive constant w′ such that

V olt((M
αk
t )(1)) ≥w′(diam((Mαk

t )(1)))3

for each k and all t ≥Tk, we can obtain the curvature estimates and take a
rescaling limit to conclude that the initial manifold M is diffeomorphic to a
flat manifold. So the initial manifold M is also geometrizable in case (2).

Therefore, we see that the Thurston geometrization conjecture is true.
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