A Topological Construction of Crossed Homomorphisms Extending the Higher Johnson Homomorphisms

Matthew Day

Department of Mathematics University of Chicago

Finite Type Invariants, Fat Graphs and Torelli-Johnson-Morita Theory Workshop, CTQM, University of Aarhus April 1st, 2008

Outline

- The Johnson Filtration of the Mapping Class Group
- Previous Work
- Main Results
- 2 A Topological version of Morita's homomorphism
 - The Topological Construction
 - Equivalence of homomorphisms
- 3 Extension of Homomorphisms
 - How It Breaks
 - About Nilpotent Homogeneous Spaces
 - The Crossed Homomorphism
 - Back to the Johnson Homomorphism
 - Remarks

Outline

1 Introduction

- The Johnson Filtration of the Mapping Class Group
- Previous Work
- Main Results
- 2 A Topological version of Morita's homomorphism
 - The Topological Construction
 - Equivalence of homomorphisms

3 Extension of Homomorphisms

- How It Breaks
- About Nilpotent Homogeneous Spaces
- The Crossed Homomorphism
- Back to the Johnson Homomorphism
- Remarks

• Let $\Sigma = \Sigma_{g,1}$, with $g \ge 3$ and basepoint $* \in \partial \Sigma$.

Let Σ = Σ_{g,1}, with g ≥ 3 and basepoint * ∈ ∂Σ.
Let π = π₁(Σ, *) and H = H₁(Σ).

- Let $\Sigma = \Sigma_{q,1}$, with $g \ge 3$ and basepoint $* \in \partial \Sigma$.
- Let $\pi = \pi_1(\Sigma, *)$ and $H = H_1(\Sigma)$.
- Let $Mod_{g,1}$ be the mapping class group relative to boundary.

• Let Γ_k be the (k-1)-step nilpotent truncation of π .

- Let Γ_k be the (k-1)-step nilpotent truncation of π .
- We have $\rho_k \colon Mod_{g,1} \to \operatorname{Aut}(\Gamma_k)$.

- Let Γ_k be the (k-1)-step nilpotent truncation of π .
- We have $\rho_k \colon Mod_{g,1} \to \operatorname{Aut}(\Gamma_k)$.
- The kth Torelli group is $\mathcal{I}_{g,1}(k) = \ker \rho_k$.

- Let Γ_k be the (k-1)-step nilpotent truncation of π .
- We have $\rho_k \colon Mod_{g,1} \to \operatorname{Aut}(\Gamma_k)$.
- The kth Torelli group is $\mathcal{I}_{g,1}(k) = \ker \rho_k$.
- The Johnson Filtration:

$$Mod_{g,1} = \mathcal{I}_{g,1}(1) \supset \mathcal{I}_{g,1}(2) \supset \cdots \supset \mathcal{I}_{g,1}(k) \supset \cdots$$

Outline

• The Johnson Filtration of the Mapping Class Group

• Previous Work

- Main Results
- 2 A Topological version of Morita's homomorphism
 - The Topological Construction
 - Equivalence of homomorphisms

3 Extension of Homomorphisms

- How It Breaks
- About Nilpotent Homogeneous Spaces
- The Crossed Homomorphism
- Back to the Johnson Homomorphism
- Remarks

The Higher Johnson Homomorphisms

• Let \mathcal{L}_{k+1} be defined by:

$$0 \to \mathcal{L}_{k+1} \to \Gamma_{k+1} \to \Gamma_k \to 1$$

The Higher Johnson Homomorphisms

• Let \mathcal{L}_{k+1} be defined by:

$$0 \to \mathcal{L}_{k+1} \to \Gamma_{k+1} \to \Gamma_k \to 1$$

• Then:

$$0 \to \operatorname{Hom}(H, \mathcal{L}_{k+1}) \to \operatorname{Aut}(\Gamma_{k+1}) \to \operatorname{Aut}(\Gamma_k) \to 1$$

The Higher Johnson Homomorphisms

• Let \mathcal{L}_{k+1} be defined by:

$$0 \to \mathcal{L}_{k+1} \to \Gamma_{k+1} \to \Gamma_k \to 1$$

• Then:

$$0 \to \operatorname{Hom}(H, \mathcal{L}_{k+1}) \to \operatorname{Aut}(\Gamma_{k+1}) \to \operatorname{Aut}(\Gamma_k) \to 1$$

Definition (Johnson)

The kth Johnson homomorphism τ_k is $\rho_{k+1}|_{\mathcal{I}_{g,1}(k)}$, with its range lifted to Hom (H, \mathcal{L}_{k+1}) :

$$\tau_k \colon \mathcal{I}_{g,1}(k) \to \operatorname{Hom}(H, \mathcal{L}_{k+1})$$

• $Mod_{g,1} \circlearrowright C_*(\pi)$ (the group homology bar chain complex).

- $Mod_{g,1} \circlearrowright C_*(\pi)$ (the group homology bar chain complex).
- Let $\ell \in \pi$ be the boundary loop.

- $Mod_{g,1} \circlearrowright C_*(\pi)$ (the group homology bar chain complex).
- Let $\ell \in \pi$ be the boundary loop.
- Pick $C_{\pi} \in C_2(\pi)$ with $\partial C_{\pi} = -[\ell] \in B_1(\pi)$.

- $Mod_{g,1} \circlearrowright C_*(\pi)$ (the group homology bar chain complex).
- Let $\ell \in \pi$ be the boundary loop.
- Pick $C_{\pi} \in C_2(\pi)$ with $\partial C_{\pi} = -[\ell] \in B_1(\pi)$.
- For $\phi \in \mathcal{I}_{g,1}(k)$, pick $D_{\phi} \in C_3(\pi)$ with $\partial D_{\phi} = C_{\pi} \phi \cdot C_{\pi}$.

- $Mod_{g,1} \circlearrowright C_*(\pi)$ (the group homology bar chain complex).
- Let $\ell \in \pi$ be the boundary loop.
- Pick $C_{\pi} \in C_2(\pi)$ with $\partial C_{\pi} = -[\ell] \in B_1(\pi)$.
- For $\phi \in \mathcal{I}_{g,1}(k)$, pick $D_{\phi} \in C_3(\pi)$ with $\partial D_{\phi} = C_{\pi} \phi \cdot C_{\pi}$.
- Let $p: \pi \to \Gamma_k$ be the projection. Then $p_*D_\phi \in Z_3(\Gamma_k)$.

- $Mod_{g,1} \circlearrowright C_*(\pi)$ (the group homology bar chain complex).
- Let $\ell \in \pi$ be the boundary loop.
- Pick $C_{\pi} \in C_2(\pi)$ with $\partial C_{\pi} = -[\ell] \in B_1(\pi)$.
- For $\phi \in \mathcal{I}_{g,1}(k)$, pick $D_{\phi} \in C_3(\pi)$ with $\partial D_{\phi} = C_{\pi} \phi \cdot C_{\pi}$.
- Let $p: \pi \to \Gamma_k$ be the projection. Then $p_*D_\phi \in Z_3(\Gamma_k)$.

Definition (Morita, 1993)

The *k*th Morita homomorphism $\tilde{\tau}_k$ is:

$$\tilde{\tau}_k \colon \mathcal{I}_{g,1}(k) \to H_3(\Gamma_k)$$

$$\phi \mapsto [p_* D_\phi]$$

- $Mod_{g,1} \circlearrowright C_*(\pi)$ (the group homology bar chain complex).
- Let $\ell \in \pi$ be the boundary loop.
- Pick $C_{\pi} \in C_2(\pi)$ with $\partial C_{\pi} = -[\ell] \in B_1(\pi)$.
- For $\phi \in \mathcal{I}_{g,1}(k)$, pick $D_{\phi} \in C_3(\pi)$ with $\partial D_{\phi} = C_{\pi} \phi \cdot C_{\pi}$.
- Let $p: \pi \to \Gamma_k$ be the projection. Then $p_*D_\phi \in Z_3(\Gamma_k)$.

Definition (Morita, 1993)

The *kth Morita homomorphism* $\tilde{\tau}_k$ is:

$$\tilde{\tau}_k \colon \mathcal{I}_{g,1}(k) \to H_3(\Gamma_k)$$

 $\phi \mapsto [p_*D_\phi]$

• The Hochschild-Serre spectral sequence for

$$0 \to \mathcal{L}_{k+1} \to \Gamma_{k+1} \to \Gamma_k \to 1$$

has a differential:

$$d^2$$
: $H_3(\Gamma_k) \to H_1(\Gamma_k, H_1(\mathcal{L}_{k+1})) \cong \operatorname{Hom}(H, \mathcal{L}_{k+1})$

• The Hochschild-Serre spectral sequence for

$$0 \to \mathcal{L}_{k+1} \to \Gamma_{k+1} \to \Gamma_k \to 1$$

has a differential:

$$d^2$$
: $H_3(\Gamma_k) \to H_1(\Gamma_k, H_1(\mathcal{L}_{k+1})) \cong \operatorname{Hom}(H, \mathcal{L}_{k+1})$

Theorem (Morita, 1993)

For each $k \geq 2$, we have:

$$\tau_k = d^2 \circ \tilde{\tau}_k$$

• The Hochschild-Serre spectral sequence for

$$0 \to \mathcal{L}_{k+1} \to \Gamma_{k+1} \to \Gamma_k \to 1$$

has a differential:

$$d^2$$
: $H_3(\Gamma_k) \to H_1(\Gamma_k, H_1(\mathcal{L}_{k+1})) \cong \operatorname{Hom}(H, \mathcal{L}_{k+1})$

Theorem (Morita, 1993)

For each $k \geq 2$, we have:

$$\tau_k = d^2 \circ \tilde{\tau}_k$$

• For each $k \geq 3$, $\tilde{\tau}_k$ is a finer invariant than τ_k :

Theorem (Heap, 2006)

 $\ker \tilde{\tau}_k = \mathcal{I}_{g,1}(2k-1).$

(4) (3) (4) (4) (4)

• The Hochschild-Serre spectral sequence for

$$0 \to \mathcal{L}_{k+1} \to \Gamma_{k+1} \to \Gamma_k \to 1$$

has a differential:

$$d^2$$
: $H_3(\Gamma_k) \to H_1(\Gamma_k, H_1(\mathcal{L}_{k+1})) \cong \operatorname{Hom}(H, \mathcal{L}_{k+1})$

Theorem (Morita, 1993)

For each $k \geq 2$, we have:

$$\tau_k = d^2 \circ \tilde{\tau}_k$$

• For each $k \geq 3$, $\tilde{\tau}_k$ is a finer invariant than τ_k :

Theorem (Heap, 2006)

 $\ker \tilde{\tau}_k = \mathcal{I}_{g,1}(2k-1).$

• Compare to ker
$$\tau_k = \mathcal{I}_{g,1}(k+1)$$
.

(4) (3) (4) (4) (4)

	Morita 1993	Morita 1996	Hain 1997	Perron 2004	Kawazumi 2005
Crossed homom. to abelian group	k = 2		k = 2	k = 2	k = 2
Crossed homom. to nilpotent group		k = 3	$\forall k \geq 3$	k = 3	
Other extension				k = 3	$\forall k \geq 3$

	Morita 1993	Morita 1996	Hain 1997	Perron 2004	Kawazumi 2005
Crossed homom. to abelian group	k = 2		k = 2	k = 2	k = 2
Crossed homom. to nilpotent group		k = 3	$\forall k \geq 3$	k = 3	
Other extension				k = 3	$\forall k \geq 3$

Groupoid lifts: Morita-Penner 2006, Bene-Kawazumi-Penner 2007.

• Question: Are there crossed homomorphisms to abelian groups that extend τ_k for $k \ge 3$?

	Morita 1993	Morita 1996	Hain 1997	Perron 2004	Kawazumi 2005
Crossed homom. to abelian group	k = 2		k = 2	k = 2	k = 2
Crossed homom. to nilpotent group		k = 3	$\forall k \geq 3$	k = 3	
Other extension				k = 3	$\forall k \geq 3$

- Question: Are there crossed homomorphisms to abelian groups that extend τ_k for $k \geq 3$?
- Question: Are there crossed homomorphisms extending the Morita homomorphisms $\tilde{\tau}_k$ for $k \geq 3$?

	Morita 1993	Morita 1996	Hain 1997	Perron 2004	Kawazumi 2005
Crossed homom. to abelian group	k = 2		k = 2	k = 2	k = 2
Crossed homom. to nilpotent group		k = 3	$\forall k \geq 3$	k = 3	
Other extension				k = 3	$\forall k \geq 3$

- Question: Are there crossed homomorphisms to abelian groups that extend τ_k for $k \geq 3$?
- Question: Are there crossed homomorphisms extending the Morita homomorphisms $\tilde{\tau}_k$ for $k \geq 3$?
- Question: Are there crossed homomorphisms to finitely generated abelian groups that extend τ_k or $\tilde{\tau}_k$ for $k \geq 3$?

	Morita 1993	Morita 1996	Hain 1997	Perron 2004	Kawazumi 2005
Crossed homom. to abelian group	k = 2		k = 2	k = 2	k = 2
Crossed homom. to nilpotent group		k = 3	$\forall k \geq 3$	k = 3	
Other extension				k = 3	$\forall k \geq 3$

- Question: Are there crossed homomorphisms to abelian groups that extend τ_k for $k \geq 3$? Yes.
- Question: Are there crossed homomorphisms extending the Morita homomorphisms $\tilde{\tau}_k$ for $k \geq 3$?
- Question: Are there crossed homomorphisms to finitely generated abelian groups that extend τ_k or $\tilde{\tau}_k$ for $k \geq 3$?

	Morita 1993	Morita 1996	Hain 1997	Perron 2004	Kawazumi 2005
Crossed homom. to abelian group	k = 2		k = 2	k = 2	k = 2
Crossed homom. to nilpotent group		k = 3	$\forall k \geq 3$	k = 3	
Other extension				k = 3	$\forall k \geq 3$

- Question: Are there crossed homomorphisms to abelian groups that extend τ_k for $k \geq 3$? Yes.
- Question: Are there crossed homomorphisms extending the Morita homomorphisms $\tilde{\tau}_k$ for $k \geq 3$? Yes.
- Question: Are there crossed homomorphisms to finitely generated abelian groups that extend τ_k or $\tilde{\tau}_k$ for $k \geq 3$?

	Morita 1993	Morita 1996	Hain 1997	Perron 2004	Kawazumi 2005
Crossed homom. to abelian group	k = 2		k = 2	k = 2	k = 2
Crossed homom. to nilpotent group		k = 3	$\forall k \geq 3$	k = 3	
Other extension				k = 3	$\forall k \geq 3$

- Question: Are there crossed homomorphisms to abelian groups that extend τ_k for $k \geq 3$? Yes.
- Question: Are there crossed homomorphisms extending the Morita homomorphisms $\tilde{\tau}_k$ for $k \geq 3$? Yes.
- Question: Are there crossed homomorphisms to finitely generated abelian groups that extend τ_k or $\tilde{\tau}_k$ for $k \geq 3$? Don't know.

Outline

1 Introduction

- The Johnson Filtration of the Mapping Class Group
- Previous Work
- Main Results
- 2 A Topological version of Morita's homomorphism
 - The Topological Construction
 - Equivalence of homomorphisms

3 Extension of Homomorphisms

- How It Breaks
- About Nilpotent Homogeneous Spaces
- The Crossed Homomorphism
- Back to the Johnson Homomorphism
- Remarks

Theorem (M. Day 2007)

For each k, there is a finite-dimensional \mathbb{R} -vector space V_k with a $Mod_{g,1}$ action, such that $H_3(\Gamma_k) \hookrightarrow V_k$ equivariantly and there is a crossed homomorphism $\epsilon_k \colon Mod_{g,1} \to V_k$ extending $\tilde{\tau}_k$. This defines a nontrivial $[\epsilon_k] \in H^1(Mod_{g,1}; V_k)$.

Theorem (M. Day 2007)

For each k, there is a finite-dimensional \mathbb{R} -vector space V_k with a $Mod_{g,1}$ action, such that $H_3(\Gamma_k) \hookrightarrow V_k$ equivariantly and there is a crossed homomorphism $\epsilon_k \colon Mod_{g,1} \to V_k$ extending $\tilde{\tau}_k$. This defines a nontrivial $[\epsilon_k] \in H^1(Mod_{g,1}; V_k)$.

Corollary

$$\begin{aligned} Mod_{g,1}/\mathcal{I}_{g,1}(2k-1) &\hookrightarrow (Mod_{g,1}/\mathcal{I}_{g,1}(k)) \ltimes V_k \\ \phi \cdot \mathcal{I}_{g,1}(2k-1) &\mapsto (\phi \cdot \mathcal{I}_{g,1}(k), \epsilon_k(\phi)) \end{aligned}$$

Theorem (M. Day 2007)

For each k, there is a finite-dimensional \mathbb{R} -vector space V_k with a $Mod_{g,1}$ action, such that $H_3(\Gamma_k) \hookrightarrow V_k$ equivariantly and there is a crossed homomorphism $\epsilon_k \colon Mod_{g,1} \to V_k$ extending $\tilde{\tau}_k$. This defines a nontrivial $[\epsilon_k] \in H^1(Mod_{g,1}; V_k)$.

Corollary

$$\begin{aligned} Mod_{g,1}/\mathcal{I}_{g,1}(2k-1) &\hookrightarrow (Mod_{g,1}/\mathcal{I}_{g,1}(k)) \ltimes V_k \\ \phi \cdot \mathcal{I}_{g,1}(2k-1) &\mapsto (\phi \cdot \mathcal{I}_{g,1}(k), \epsilon_k(\phi)) \end{aligned}$$

Proof of Corollary needs that $\ker(Mod_{g,1} \bigcirc V_k) = \mathcal{I}_{g,1}(k)$.
For each k, there is a finite-dimensional \mathbb{R} -vector space V_k with a $Mod_{g,1}$ action, such that $H_3(\Gamma_k) \hookrightarrow V_k$ equivariantly and there is a crossed homomorphism $\epsilon_k \colon Mod_{g,1} \to V_k$ extending $\tilde{\tau}_k$. This defines a nontrivial $[\epsilon_k] \in H^1(Mod_{g,1}; V_k)$.

Corollary

$$\begin{aligned} Mod_{g,1}/\mathcal{I}_{g,1}(2k-1) &\hookrightarrow (Mod_{g,1}/\mathcal{I}_{g,1}(k)) \ltimes V_k \\ \phi \cdot \mathcal{I}_{g,1}(2k-1) &\mapsto (\phi \cdot \mathcal{I}_{g,1}(k), \epsilon_k(\phi)) \end{aligned}$$

Proof of Corollary needs that $\ker(Mod_{g,1} \circlearrowright V_k) = \mathcal{I}_{g,1}(k)$.

For each k, there is a finite-dimensional \mathbb{R} -vector space V'_k with a $Mod_{g,1}$ action, such that $Hom(H, \mathcal{L}_{k+1}) \hookrightarrow V'_k$ equivariantly and there is a crossed homomorphism $\epsilon'_k \colon Mod_{g,1} \to V'_k$ extending τ_k . This defines a nontrivial $[\epsilon'_k] \in H^1(Mod_{g,1}; V'_k)$.

For each k, there is a finite-dimensional \mathbb{R} -vector space V'_k with a $Mod_{g,1}$ action, such that $Hom(H, \mathcal{L}_{k+1}) \hookrightarrow V'_k$ equivariantly and there is a crossed homomorphism $\epsilon'_k \colon Mod_{g,1} \to V'_k$ extending τ_k . This defines a nontrivial $[\epsilon'_k] \in H^1(Mod_{g,1}; V'_k)$.

Corollary

$$\begin{aligned} Mod_{g,1}/\mathcal{I}_{g,1}(k+1) &\hookrightarrow (Mod_{g,1}/\mathcal{I}_{g,1}(k)) \ltimes V'_k \\ \phi \cdot \mathcal{I}_{g,1}(k+1) &\mapsto (\phi \cdot \mathcal{I}_{g,1}(k), \epsilon'_k(\phi)) \end{aligned}$$

For each k, there is a finite-dimensional \mathbb{R} -vector space V'_k with a $Mod_{g,1}$ action, such that $Hom(H, \mathcal{L}_{k+1}) \hookrightarrow V'_k$ equivariantly and there is a crossed homomorphism $\epsilon'_k \colon Mod_{g,1} \to V'_k$ extending τ_k . This defines a nontrivial $[\epsilon'_k] \in H^1(Mod_{g,1}; V'_k)$.

Corollary

$$\begin{aligned} Mod_{g,1}/\mathcal{I}_{g,1}(k+1) &\hookrightarrow (Mod_{g,1}/\mathcal{I}_{g,1}(k)) \ltimes V'_k \\ \phi \cdot \mathcal{I}_{g,1}(k+1) &\mapsto (\phi \cdot \mathcal{I}_{g,1}(k), \epsilon'_k(\phi)) \end{aligned}$$

Proof of Corollary needs that $\ker(Mod_{g,1} \circlearrowright V'_k) = \mathcal{I}_{g,1}(k)$.

Outline

- The Johnson Filtration of the Mapping Class Group
- Previous Work
- Main Results

• A Topological version of Morita's homomorphism

- The Topological Construction
- Equivalence of homomorphisms

3 Extension of Homomorphisms

- How It Breaks
- About Nilpotent Homogeneous Spaces
- The Crossed Homomorphism
- Back to the Johnson Homomorphism
- Remarks

• Fix
$$X_k = K(\Gamma_k, 1)$$
.

Matthew Day (University of Chicago) Topological construction of Johnson maps 4/1/2008, CTQM Workshop 15 / 31

2

イロト イヨト イヨト イヨト

- Fix $X_k = K(\Gamma_k, 1)$.
- Pick $i: (\Sigma, *) \to (X_k, *)$ with $i_*: \pi \to \Gamma_k$ the canonical projection.

3 × 4 3 ×

- Fix $X_k = K(\Gamma_k, 1)$.
- Pick $i: (\Sigma, *) \to (X_k, *)$ with $i_*: \pi \to \Gamma_k$ the canonical projection.
- If $\phi \in \text{Diff}(\Sigma, \partial \Sigma)$ with $[\phi] \in \mathcal{I}_{g,1}(k)$, then $(i \circ \phi)_* = i_* \colon \pi \to \Gamma_k$.

- Fix $X_k = K(\Gamma_k, 1)$.
- Pick $i: (\Sigma, *) \to (X_k, *)$ with $i_*: \pi \to \Gamma_k$ the canonical projection.
- If $\phi \in \text{Diff}(\Sigma, \partial \Sigma)$ with $[\phi] \in \mathcal{I}_{g,1}(k)$, then $(i \circ \phi)_* = i_* \colon \pi \to \Gamma_k$.
- So for any such ϕ , we can find a homotopy relative to *:

 $F_{\phi} \colon \Sigma \times [0,1] \to X_k$ $F_{\phi} \colon i \rightsquigarrow i \circ \phi^{-1}$

• Fix
$$X_k = K(\Gamma_k, 1)$$
.

• Pick $i: (\Sigma, *) \to (X_k, *)$ with $i_*: \pi \to \Gamma_k$ the canonical projection.

- If $\phi \in \text{Diff}(\Sigma, \partial \Sigma)$ with $[\phi] \in \mathcal{I}_{g,1}(k)$, then $(i \circ \phi)_* = i_* \colon \pi \to \Gamma_k$.
- So for any such ϕ , we can find a homotopy relative to *:

$$F_{\phi} \colon \Sigma \times [0,1] \to X_k$$
$$F_{\phi} \colon i \rightsquigarrow i \circ \phi^{-1}$$

• In fact, without loss of generality, we can take F_{ϕ} to be a homotopy relative to $\partial \Sigma$.

• Let M_{ϕ} be the mapping torus of ϕ , but with each fiber of $\partial \Sigma$ smashed to a point.

- Let M_{ϕ} be the mapping torus of ϕ , but with each fiber of $\partial \Sigma$ smashed to a point.
- F_{ϕ} defines a map $F'_{\phi} \colon M_{\phi} \to X_k$.

- Let M_{ϕ} be the mapping torus of ϕ , but with each fiber of $\partial \Sigma$ smashed to a point.
- F_{ϕ} defines a map $F'_{\phi} \colon M_{\phi} \to X_k$.
- M_{ϕ} is a closed 3-manifold.

• Let M_{ϕ} be the mapping torus of ϕ , but with each fiber of $\partial \Sigma$ smashed to a point.

•
$$F_{\phi}$$
 defines a map $F'_{\phi} \colon M_{\phi} \to X_k$.

• M_{ϕ} is a closed 3-manifold.

Definition (Topological version of Morita's homomorphism)

The topological version of the kth Morita homomorphism $\overline{\epsilon}_k$ is:

$$\bar{\epsilon}_k \colon \mathcal{I}_{g,1}(k) \to H_3(\Gamma_k)$$
$$[\phi] \mapsto (F'_{\phi})_*[M_{\phi}]$$

• Let M_{ϕ} be the mapping torus of ϕ , but with each fiber of $\partial \Sigma$ smashed to a point.

•
$$F_{\phi}$$
 defines a map $F'_{\phi} \colon M_{\phi} \to X_k$.

• M_{ϕ} is a closed 3-manifold.

Definition (Topological version of Morita's homomorphism)

The topological version of the kth Morita homomorphism $\overline{\epsilon}_k$ is:

$$\overline{\epsilon}_k \colon \mathcal{I}_{g,1}(k) \to H_3(\Gamma_k)$$
$$[\phi] \mapsto (F'_{\phi})_*[M_{\phi}]$$

• $\overline{\epsilon}_k$ is a homomorphism and is independent of all choices.

• Let M_{ϕ} be the mapping torus of ϕ , but with each fiber of $\partial \Sigma$ smashed to a point.

•
$$F_{\phi}$$
 defines a map $F'_{\phi} \colon M_{\phi} \to X_k$.

• M_{ϕ} is a closed 3-manifold.

Definition (Topological version of Morita's homomorphism)

The topological version of the kth Morita homomorphism $\overline{\epsilon}_k$ is:

$$\overline{\epsilon}_k \colon \mathcal{I}_{g,1}(k) \to H_3(\Gamma_k)$$
$$[\phi] \mapsto (F'_{\phi})_*[M_{\phi}]$$

- $\overline{\epsilon}_k$ is a homomorphism and is independent of all choices.
- Inspired by Johnson's "Third Definition" of τ_2 from A survey of the Torelli group (1983).

• Let M_{ϕ} be the mapping torus of ϕ , but with each fiber of $\partial \Sigma$ smashed to a point.

•
$$F_{\phi}$$
 defines a map $F'_{\phi} \colon M_{\phi} \to X_k$.

• M_{ϕ} is a closed 3-manifold.

Definition (Topological version of Morita's homomorphism)

The topological version of the kth Morita homomorphism $\overline{\epsilon}_k$ is:

$$\overline{\epsilon}_k \colon \mathcal{I}_{g,1}(k) \to H_3(\Gamma_k)$$
$$[\phi] \mapsto (F'_{\phi})_*[M_{\phi}]$$

- $\overline{\epsilon}_k$ is a homomorphism and is independent of all choices.
- Inspired by Johnson's "Third Definition" of τ_2 from A survey of the Torelli group (1983).

[▶] Jump Ahead

Outline

- The Johnson Filtration of the Mapping Class Group
- Previous Work
- Main Results

2 A Topological version of Morita's homomorphism

- The Topological Construction
- Equivalence of homomorphisms

3 Extension of Homomorphisms

- How It Breaks
- About Nilpotent Homogeneous Spaces
- The Crossed Homomorphism
- Back to the Johnson Homomorphism
- Remarks

The maps $\tilde{\tau}_k$ and $\bar{\epsilon}_k$ are identified by the canonical isomorphism $H_3(\Gamma_k) \cong H_3(X_k)$.

 $ilde{ au}_k$ Definition $ilde{\epsilon}_k$ Definition

A B A A B A

< 47 ▶

The maps $\tilde{\tau}_k$ and $\bar{\epsilon}_k$ are identified by the canonical isomorphism $H_3(\Gamma_k) \cong H_3(X_k)$.

Proof sketch:

• Show that $\bar{\epsilon}_k([\phi])$ is represented by the difference of $(F_{\phi})_*(C_{\Sigma} \times [0,1])$ and a correction factor $D_{\phi^{-1}}$ $(C_{\Sigma}$ is a fundamental class rel. to ∂).

 $\tilde{\tau}_k$ Definition $\overline{\epsilon}_k$ Definition

The maps $\tilde{\tau}_k$ and $\bar{\epsilon}_k$ are identified by the canonical isomorphism $H_3(\Gamma_k) \cong H_3(X_k)$.

Proof sketch:

- Show that $\overline{\epsilon}_k([\phi])$ is represented by the difference of $(F_{\phi})_*(C_{\Sigma} \times [0,1])$ and a correction factor $D_{\phi^{-1}}$ $(C_{\Sigma}$ is a fundamental class rel. to ∂).
- Show that $(F_{\phi})_*(C_{\Sigma} \times [0,1])$ is sent to a boundary by a chain map inducing the canonical $H_3(\Gamma_k) \cong H_3(X_k)$.

 $\tilde{\tau}_k$ Definition $\overline{\epsilon}_k$ Definition

 $\overline{\epsilon}_k$ Definition

The maps $\tilde{\tau}_k$ and $\bar{\epsilon}_k$ are identified by the canonical isomorphism $H_3(\Gamma_k) \cong H_3(X_k)$.

Proof sketch:

Definition

- Show that $\overline{\epsilon}_k([\phi])$ is represented by the difference of $(F_{\phi})_*(C_{\Sigma} \times [0,1])$ and a correction factor $D_{\phi^{-1}}$ (C_{Σ} is a fundamental class rel. to ∂).
- Show that $(F_{\phi})_*(C_{\Sigma} \times [0,1])$ is sent to a boundary by a chain map inducing the canonical $H_3(\Gamma_k) \cong H_3(X_k)$.
- Show that $D_{\phi^{-1}}$ is sent to a chain representing $\tilde{\tau}_k([\phi])$.

Outline

- The Johnson Filtration of the Mapping Class Group
- Previous Work
- Main Results
- 2 A Topological version of Morita's homomorphism
 - The Topological Construction
 - Equivalence of homomorphisms

3 Extension of Homomorphisms

- How It Breaks
- About Nilpotent Homogeneous Spaces
- The Crossed Homomorphism
- Back to the Johnson Homomorphism
- Remarks

Take $\phi \in \text{Diff}(\Sigma, \partial \Sigma)$ with $[\phi] \notin \mathcal{I}_{g,1}(k)$. The homotopy machine breaks.

- The homotopy machine breaks.
 - Quick fix:

- **1** The homotopy machine breaks.
 - Quick fix: build X_k such that λ : $Mod_{g,1} \circlearrowright X_k$ inducing $Mod_{g,1} \circlearrowright \Gamma_k$.

- The homotopy machine breaks.
 - Quick fix: build X_k such that λ : $Mod_{g,1} \circlearrowright X_k$ inducing $Mod_{g,1} \circlearrowright \Gamma_k$.
 - Now take F_{ϕ} a homotopy from *i* to $\lambda([\phi]) \circ i \circ \phi^{-1}$.

- The homotopy machine breaks.
 - Quick fix: build X_k such that λ : $Mod_{g,1} \circlearrowright X_k$ inducing $Mod_{g,1} \circlearrowright \Gamma_k$.
 - Now take F_{ϕ} a homotopy from *i* to $\lambda([\phi]) \circ i \circ \phi^{-1}$.
- **2** But these F_{ϕ} do not define cycles.

- The homotopy machine breaks.
 - Quick fix: build X_k such that λ : $Mod_{g,1} \circlearrowright X_k$ inducing $Mod_{g,1} \circlearrowright \Gamma_k$.
 - Now take F_{ϕ} a homotopy from *i* to $\lambda([\phi]) \circ i \circ \phi^{-1}$.
- **2** But these F_{ϕ} do not define cycles.
 - Harder fix:

- The homotopy machine breaks.
 - Quick fix: build X_k such that λ : $Mod_{g,1} \circlearrowright X_k$ inducing $Mod_{g,1} \circlearrowright \Gamma_k$.
 - Now take F_{ϕ} a homotopy from *i* to $\lambda([\phi]) \circ i \circ \phi^{-1}$.
- **2** But these F_{ϕ} do not define cycles.
 - Harder fix: collect data from F_ϕ to get an invariant anyway.

- The homotopy machine breaks.
 - Quick fix: build X_k such that λ : $Mod_{g,1} \circlearrowright X_k$ inducing $Mod_{g,1} \circlearrowright \Gamma_k$.
 - Now take F_{ϕ} a homotopy from *i* to $\lambda([\phi]) \circ i \circ \phi^{-1}$.
- **2** But these F_{ϕ} do not define cycles.
 - Harder fix: collect data from F_ϕ to get an invariant anyway.
 - We want an equivariant map from $C_3(X_k)$ to a nicer $Mod_{g,1}$ -module.

Outline

- The Johnson Filtration of the Mapping Class Group
- Previous Work
- Main Results
- 2 A Topological version of Morita's homomorphism
 - The Topological Construction
 - Equivalence of homomorphisms

Extension of Homomorphisms

- How It Breaks
- About Nilpotent Homogeneous Spaces
- The Crossed Homomorphism
- Back to the Johnson Homomorphism
- Remarks

• We will be using Mal'cev completions:

Theorem (Mal'cev)

For each finitely-generated torsion-free nilpotent group Γ , there is a unique contractible nilpotent Lie group G with $\Gamma \hookrightarrow G$ as a lattice. This G is the Mal'cev completion of Γ . Further, Aut $\Gamma \circlearrowright G$.

• We will be using Mal'cev completions:

Theorem (Mal'cev)

For each finitely-generated torsion-free nilpotent group Γ , there is a unique contractible nilpotent Lie group G with $\Gamma \hookrightarrow G$ as a lattice. This G is the Mal'cev completion of Γ . Further, Aut $\Gamma \circlearrowright G$.

• The homogeneous space $X = G/\Gamma$ is a $K(\Gamma, 1)$.

• We will be using Mal'cev completions:

Theorem (Mal'cev)

For each finitely-generated torsion-free nilpotent group Γ , there is a unique contractible nilpotent Lie group G with $\Gamma \hookrightarrow G$ as a lattice. This G is the Mal'cev completion of Γ . Further, Aut $\Gamma \circlearrowright G$.

- The homogeneous space $X = G/\Gamma$ is a $K(\Gamma, 1)$.
- The action Aut $\Gamma \circlearrowright X$ induces the usual action on $\pi_1(X, [e]) = \Gamma$.
• We will be using Mal'cev completions:

Theorem (Mal'cev)

For each finitely-generated torsion-free nilpotent group Γ , there is a unique contractible nilpotent Lie group G with $\Gamma \hookrightarrow G$ as a lattice. This G is the Mal'cev completion of Γ . Further, Aut $\Gamma \circlearrowright G$.

- The homogeneous space $X = G/\Gamma$ is a $K(\Gamma, 1)$.
- The action Aut $\Gamma \circlearrowright X$ induces the usual action on $\pi_1(X, [e]) = \Gamma$.
- Example: The 3–dimensional Heisenberg group.

• We will be using Mal'cev completions:

Theorem (Mal'cev)

For each finitely-generated torsion-free nilpotent group Γ , there is a unique contractible nilpotent Lie group G with $\Gamma \hookrightarrow G$ as a lattice. This G is the Mal'cev completion of Γ . Further, Aut $\Gamma \circlearrowright G$.

- The homogeneous space $X = G/\Gamma$ is a $K(\Gamma, 1)$.
- The action Aut $\Gamma \circlearrowright X$ induces the usual action on $\pi_1(X, [e]) = \Gamma$.
- Example: The 3–dimensional Heisenberg group.
- Let G_k be the Mal'cev completion of Γ_k . Fix $X_k = G_k/\Gamma_k$. So $Mod_{g,1}$ acts on X_k , fixing the first problem.

() → (

Theorem (Nomizu)

Let X be a compact manifold that is a homogeneous space of a connected nilpotent Lie group G with Lie algebra \mathfrak{g} . Then the left-propagation map L: $C^*(\mathfrak{g}) \to C^*(X; \mathbb{R})$ induces an isomorphism $H^*(\mathfrak{g}) \to H^*(X; \mathbb{R}).$

Theorem (Nomizu)

Let X be a compact manifold that is a homogeneous space of a connected nilpotent Lie group G with Lie algebra \mathfrak{g} . Then the left-propagation map L: $C^*(\mathfrak{g}) \to C^*(X; \mathbb{R})$ induces an isomorphism $H^*(\mathfrak{g}) \to H^*(X; \mathbb{R})$.

• For $C \in C_m(X; \mathbb{R})$, there is a unique $v(C) \in C_m(\mathfrak{g})$ such that for each $\alpha \in C^m(\mathfrak{g})$:

$$\int_C L(\alpha) = \alpha(v(C))$$

Theorem (Nomizu)

Let X be a compact manifold that is a homogeneous space of a connected nilpotent Lie group G with Lie algebra \mathfrak{g} . Then the left-propagation map L: $C^*(\mathfrak{g}) \to C^*(X; \mathbb{R})$ induces an isomorphism $H^*(\mathfrak{g}) \to H^*(X; \mathbb{R})$.

• For $C \in C_m(X; \mathbb{R})$, there is a unique $v(C) \in C_m(\mathfrak{g})$ such that for each $\alpha \in C^m(\mathfrak{g})$:

$$\int_C L(\alpha) = \alpha(v(C))$$

• The chain map $v \colon C_*(X;\mathbb{R}) \to C_*(\mathfrak{g})$ induces $H_*(X;\mathbb{R}) \cong H_*(\mathfrak{g})$.

Outline

- The Johnson Filtration of the Mapping Class Group
- Previous Work
- Main Results
- 2 A Topological version of Morita's homomorphism
 - The Topological Construction
 - Equivalence of homomorphisms

Extension of Homomorphisms

- How It Breaks
- About Nilpotent Homogeneous Spaces
- The Crossed Homomorphism
- Back to the Johnson Homomorphism
- Remarks

• As before, G_k is the Mal'cev completion of Γ_k , and $X_k = G_k/\Gamma_k$. Let \mathfrak{g}_k be the Lie algebra of G_k .

- As before, G_k is the Mal'cev completion of Γ_k , and $X_k = G_k/\Gamma_k$. Let \mathfrak{g}_k be the Lie algebra of G_k .
- Then X_k is a $K(\Gamma_k, 1)$, there is an action $\lambda \colon Mod_{g,1} \circlearrowright X_k$, and $v \colon C_*(X_k; \mathbb{R}) \to C_*(\mathfrak{g}_k)$ induces $H_*(X; \mathbb{R}) \cong H_*(\mathfrak{g}_k)$.

- As before, G_k is the Mal'cev completion of Γ_k , and $X_k = G_k/\Gamma_k$. Let \mathfrak{g}_k be the Lie algebra of G_k .
- Then X_k is a $K(\Gamma_k, 1)$, there is an action $\lambda \colon Mod_{g,1} \circlearrowright X_k$, and $v \colon C_*(X_k; \mathbb{R}) \to C_*(\mathfrak{g}_k)$ induces $H_*(X; \mathbb{R}) \cong H_*(\mathfrak{g}_k)$.
- Set $V_k = C_3(\mathfrak{g}_k)/B_3(\mathfrak{g}_k)$.

- As before, G_k is the Mal'cev completion of Γ_k , and $X_k = G_k/\Gamma_k$. Let \mathfrak{g}_k be the Lie algebra of G_k .
- Then X_k is a $K(\Gamma_k, 1)$, there is an action $\lambda \colon Mod_{g,1} \circlearrowright X_k$, and $v \colon C_*(X_k; \mathbb{R}) \to C_*(\mathfrak{g}_k)$ induces $H_*(X; \mathbb{R}) \cong H_*(\mathfrak{g}_k)$.
- Set $V_k = C_3(\mathfrak{g}_k)/B_3(\mathfrak{g}_k)$.
- By Igusa–Orr (2001), $H_3(\Gamma_k)$ is torsion-free. So we have a $Mod_{g,1}$ –equivariant embedding:

$$H_3(X_k) \hookrightarrow H_3(X_k; \mathbb{R}) \cong H_3(\mathfrak{g}_k) \hookrightarrow V_k$$

э

The Crossed Homomorphism

• For $\phi \in \text{Diff}(\Sigma; \partial \Sigma)$, pick a homotopy F_{ϕ} from *i* to $\lambda([\phi]) \circ i \circ \phi^{-1}$.

Definition

The extended kth Morita map is:

$$\epsilon_k \colon Mod_{g,1} \to V_k$$
$$[\phi] \mapsto \left[v \left((F_{\phi})_* (C_{\Sigma} \times [0,1]) \right) \right]$$

Definition

The extended kth Morita map is:

$$\begin{bmatrix} k \colon Mod_{g,1} \to V_k \\ [\phi] \mapsto \left[v \big((F_{\phi})_* (C_{\Sigma} \times [0,1]) \big) \right] \end{bmatrix}$$

• ϵ_k is a crossed homomorphism and is independent of choices other than $i: \Sigma \to X_k$.

Definition

The extended kth Morita map is:

$$\begin{bmatrix} k \colon Mod_{g,1} \to V_k \\ [\phi] \mapsto \left[v \big((F_{\phi})_* (C_{\Sigma} \times [0,1]) \big) \right] \end{bmatrix}$$

- ϵ_k is a crossed homomorphism and is independent of choices other than $i: \Sigma \to X_k$.
- $[\epsilon_k] \in H^1(Mod_{g,1}; V_k)$ does not depend on *i*.

Definition

The extended kth Morita map is:

$$\begin{bmatrix} k \colon Mod_{g,1} \to V_k \\ [\phi] \mapsto \left[v \big((F_{\phi})_* (C_{\Sigma} \times [0,1]) \big) \right] \end{bmatrix}$$

- ϵ_k is a crossed homomorphism and is independent of choices other than $i: \Sigma \to X_k$.
- $[\epsilon_k] \in H^1(Mod_{g,1}; V_k)$ does not depend on *i*.
- ϵ_k extends $\overline{\epsilon}_k$, and $[\epsilon_k] \neq 0$.

[▶] Theorem Statement

Outline

- The Johnson Filtration of the Mapping Class Group
- Previous Work
- Main Results
- 2 A Topological version of Morita's homomorphism
 - The Topological Construction
 - Equivalence of homomorphisms

Extension of Homomorphisms

- How It Breaks
- About Nilpotent Homogeneous Spaces
- The Crossed Homomorphism
- Back to the Johnson Homomorphism
- Remarks

• Let l_{k+1} be defined by:

$$0 \to \mathfrak{l}_{k+1} \to \mathfrak{g}_{k+1} \to \mathfrak{g}_k \to 0$$

• Let \mathfrak{l}_{k+1} be defined by:

$$0 \to \mathfrak{l}_{k+1} \to \mathfrak{g}_{k+1} \to \mathfrak{g}_k \to 0$$

• Let d^2 also denote the differential from the spectral sequence from this extension:

$$d^2$$
: $H_3(\mathfrak{g}_k) \to H_1(\mathfrak{g}_k; H_1(\mathfrak{l}_{k+1}))$

• Let l_{k+1} be defined by:

$$0 \to \mathfrak{l}_{k+1} \to \mathfrak{g}_{k+1} \to \mathfrak{g}_k \to 0$$

• Let d^2 also denote the differential from the spectral sequence from this extension:

$$d^2$$
: $H_3(\mathfrak{g}_k) \to H_1(\mathfrak{g}_k; H_1(\mathfrak{l}_{k+1}))$

• Let
$$V'_k = C_2(\mathfrak{g}_{k+1})/(\mathfrak{g}_{k+1}^{(1)} \wedge \mathfrak{l}_{k+1}).$$

• Let l_{k+1} be defined by:

$$0 \to \mathfrak{l}_{k+1} \to \mathfrak{g}_{k+1} \to \mathfrak{g}_k \to 0$$

• Let d^2 also denote the differential from the spectral sequence from this extension:

$$d^2 \colon H_3(\mathfrak{g}_k) \to H_1(\mathfrak{g}_k; H_1(\mathfrak{l}_{k+1}))$$

- Let $V'_k = C_2(\mathfrak{g}_{k+1})/(\mathfrak{g}_{k+1}^{(1)} \wedge \mathfrak{l}_{k+1}).$
- $H_1(\mathfrak{g}_k; H_1(\mathfrak{l}_{k+1})) \hookrightarrow V'_k$ and there is a $Mod_{g,1}$ -equivariant $\tilde{d}^2: V_k \to V'_k$ extending d^2 .

• Let l_{k+1} be defined by:

$$0 \to \mathfrak{l}_{k+1} \to \mathfrak{g}_{k+1} \to \mathfrak{g}_k \to 0$$

• Let d^2 also denote the differential from the spectral sequence from this extension:

$$d^2: H_3(\mathfrak{g}_k) \to H_1(\mathfrak{g}_k; H_1(\mathfrak{l}_{k+1}))$$

Definition

Define
$$\epsilon'_k = \tilde{d}^2 \circ \epsilon_k$$
.

The crossed homomorphism ϵ'_k extends τ_k

Proof that ϵ'_k extends τ_k .

Proof that ϵ'_k extends τ_k .

Matthew Day (University of Chicago) Topological construction of Johnson maps 4/1/2008, CTQM Workshop 29 / 31

Outline

- The Johnson Filtration of the Mapping Class Group
- Previous Work
- Main Results
- 2 A Topological version of Morita's homomorphism
 - The Topological Construction
 - Equivalence of homomorphisms

Extension of Homomorphisms

- How It Breaks
- About Nilpotent Homogeneous Spaces
- The Crossed Homomorphism
- Back to the Johnson Homomorphism
- Remarks

• Problem: Adapt these methods to work better for direct computation.

э

3

< 行

- Problem: Adapt these methods to work better for direct computation.
- Remark: The use of $\text{Diff}(\Sigma, \partial \Sigma)$ and integration suggests connections between invariants of diffeomorphism groups and $Mod_{g,1}$.

- Problem: Adapt these methods to work better for direct computation.
- Remark: The use of $\text{Diff}(\Sigma, \partial \Sigma)$ and integration suggests connections between invariants of diffeomorphism groups and $Mod_{g,1}$.
- Example: There is a connection between extended flux on $\operatorname{Symp}(\Sigma_{g,*}, \omega)$ and τ_2 .

- Problem: Adapt these methods to work better for direct computation.
- Remark: The use of $\text{Diff}(\Sigma, \partial \Sigma)$ and integration suggests connections between invariants of diffeomorphism groups and $Mod_{g,1}$.
- Example: There is a connection between extended flux on $\operatorname{Symp}(\Sigma_{g,*}, \omega)$ and τ_2 .
- Remark: There is a related topological construction for τ_k on Aut F_n (in progress).

- Problem: Adapt these methods to work better for direct computation.
- Remark: The use of $\text{Diff}(\Sigma, \partial \Sigma)$ and integration suggests connections between invariants of diffeomorphism groups and $Mod_{g,1}$.
- Example: There is a connection between extended flux on $\operatorname{Symp}(\Sigma_{g,*}, \omega)$ and τ_2 .
- Remark: There is a related topological construction for τ_k on Aut F_n (in progress).
- Question: What is the "best possible" range for a crossed homomorphism extending τ_k ?