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The Basic Objects of Study

Let Σ = Σg,1, with g ≥ 3 and basepoint ∗ ∈ ∂Σ.

Let π = π1(Σ, ∗) and H = H1(Σ).
Let Modg,1 be the mapping class group relative to boundary.

Matthew Day (University of Chicago) Topological construction of Johnson maps 4/1/2008, CTQM Workshop 4 / 31



The Basic Objects of Study

Let Σ = Σg,1, with g ≥ 3 and basepoint ∗ ∈ ∂Σ.
Let π = π1(Σ, ∗) and H = H1(Σ).

Let Modg,1 be the mapping class group relative to boundary.

Matthew Day (University of Chicago) Topological construction of Johnson maps 4/1/2008, CTQM Workshop 4 / 31



The Basic Objects of Study

Let Σ = Σg,1, with g ≥ 3 and basepoint ∗ ∈ ∂Σ.
Let π = π1(Σ, ∗) and H = H1(Σ).
Let Modg,1 be the mapping class group relative to boundary.

Matthew Day (University of Chicago) Topological construction of Johnson maps 4/1/2008, CTQM Workshop 4 / 31



The Johnson Filtration

Let Γk be the (k − 1)–step nilpotent truncation of π.

We have ρk : Modg,1 → Aut (Γk).
The kth Torelli group is Ig,1(k) = ker ρk.
The Johnson Filtration:

Modg,1 = Ig,1(1) ⊃ Ig,1(2) ⊃ · · · ⊃ Ig,1(k) ⊃ · · ·
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The Higher Johnson Homomorphisms

Let Lk+1 be defined by:

0→ Lk+1 → Γk+1 → Γk → 1

Then:

0→ Hom(H,Lk+1)→ Aut (Γk+1)→ Aut (Γk)→ 1

Definition (Johnson)

The kth Johnson homomorphism τk is ρk+1|Ig,1(k), with its range lifted
to Hom(H,Lk+1):

τk : Ig,1(k)→ Hom(H,Lk+1)
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Morita’s refinement of the kth Johnson homomorphism

Modg,1 � C∗(π) (the group homology bar chain complex).

Let ` ∈ π be the boundary loop.
Pick Cπ ∈ C2(π) with ∂Cπ = −[`] ∈ B1(π).
For φ ∈ Ig,1(k), pick Dφ ∈ C3(π) with ∂Dφ = Cπ − φ · Cπ.
Let p : π → Γk be the projection. Then p∗Dφ ∈ Z3(Γk).

Definition (Morita, 1993)

The kth Morita homomorphism τ̃k is:

τ̃k : Ig,1(k)→ H3(Γk)
φ 7→ [p∗Dφ]

Jump Ahead
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How is τ̃k related to τk?

The Hochschild-Serre spectral sequence for

0→ Lk+1 → Γk+1 → Γk → 1

has a differential:

d2 : H3(Γk)→ H1(Γk, H1(Lk+1)) ∼= Hom(H,Lk+1)

Theorem (Morita, 1993)

For each k ≥ 2, we have:
τk = d2 ◦ τ̃k

For each k ≥ 3, τ̃k is a finer invariant than τk:

Theorem (Heap, 2006)

ker τ̃k = Ig,1(2k − 1).

Compare to ker τk = Ig,1(k + 1).
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Other Work Extending Johnson Homomorphisms

M
o
ri

ta
1
9
9
3

M
o
ri

ta
1
9
9
6

H
a
in

1
9
9
7

P
er

ro
n

2
0
0
4

K
aw

a
zu

m
i
2
0
0
5

Crossed homom. to abelian group k = 2 k = 2 k = 2 k = 2

Crossed homom. to nilpotent group k = 3 ∀k ≥ 3 k = 3

Other extension k = 3 ∀k ≥ 3

Groupoid lifts: Morita-Penner 2006, Bene-Kawazumi-Penner 2007.

Question: Are there crossed homomorphisms to abelian groups
that extend τk for k ≥ 3? Yes.
Question: Are there crossed homomorphisms extending the Morita
homomorphisms τ̃k for k ≥ 3? Yes.
Question: Are there crossed homomorphisms to finitely generated
abelian groups that extend τk or τ̃k for k ≥ 3? Don’t know.
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Results on Morita’s Homomorphisms

Theorem (M. Day 2007)

For each k, there is a finite-dimensional R–vector space Vk with a
Modg,1 action, such that H3(Γk) ↪→ Vk equivariantly and there is a
crossed homomorphism εk : Modg,1 → Vk extending τ̃k. This defines a
nontrivial [εk] ∈ H1(Modg,1;Vk).

Corollary

Modg,1/Ig,1(2k − 1) ↪→ (Modg,1/Ig,1(k)) n Vk

φ · Ig,1(2k − 1) 7→ (φ · Ig,1(k), εk(φ))

Proof of Corollary needs that ker(Modg,1 � Vk) = Ig,1(k). Jump Ahead
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Results on Johnson Homomorphisms

Theorem (M. Day 2007)

For each k, there is a finite-dimensional R–vector space V ′k with a
Modg,1 action, such that Hom(H,Lk+1) ↪→ V ′k equivariantly and there
is a crossed homomorphism ε′k : Modg,1 → V ′k extending τk. This
defines a nontrivial [ε′k] ∈ H1(Modg,1;V ′k).
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K(Γk, 1) Considerations

Fix Xk = K(Γk, 1).

Pick i : (Σ, ∗)→ (Xk, ∗) with i∗ : π → Γk the canonical projection.
If φ ∈ Diff(Σ, ∂Σ) with [φ] ∈ Ig,1(k), then (i ◦ φ)∗ = i∗ : π → Γk.
So for any such φ, we can find a homotopy relative to ∗:

Fφ : Σ× [0, 1]→ Xk

Fφ : i i ◦ φ−1

In fact, without loss of generality, we can take Fφ to be a
homotopy relative to ∂Σ.
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A New Definition for τ̃k

Let Mφ be the mapping torus of φ, but with each fiber of ∂Σ
smashed to a point.

Fφ defines a map F ′φ : Mφ → Xk.
Mφ is a closed 3–manifold.

Definition (Topological version of Morita’s homomorphism)

The topological version of the kth Morita homomorphism εk is:

εk : Ig,1(k)→ H3(Γk)
[φ] 7→ (F ′φ)∗[Mφ]

εk is a homomorphism and is independent of all choices.
Inspired by Johnson’s “Third Definition” of τ2 from A survey of
the Torelli group (1983).

Jump Ahead
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Theorem (M. Day)

The maps τ̃k and εk are identified by the canonical isomorphism
H3(Γk) ∼= H3(Xk).

Proof sketch:

Show that εk([φ]) is represented by the difference of
(Fφ)∗(CΣ × [0, 1]) and a correction factor Dφ−1 (CΣ is a
fundamental class rel. to ∂).
Show that (Fφ)∗(CΣ × [0, 1]) is sent to a boundary by a chain map
inducing the canonical H3(Γk) ∼= H3(Xk).
Show that Dφ−1 is sent to a chain representing τ̃k([φ]).

τ̃k Definition εk Definition
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How It Breaks

Take φ ∈ Diff(Σ, ∂Σ) with [φ] /∈ Ig,1(k).

1 The homotopy machine breaks.
Quick fix: build Xk such that λ : Modg,1 � Xk inducing
Modg,1 � Γk.
Now take Fφ a homotopy from i to λ([φ]) ◦ i ◦ φ−1.

2 But these Fφ do not define cycles.
Harder fix: collect data from Fφ to get an invariant anyway.
We want an equivariant map from C3(Xk) to a nicer
Modg,1–module.
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General terms

We will be using Mal’cev completions:

Theorem (Mal’cev)

For each finitely-generated torsion-free nilpotent group Γ, there is a
unique contractible nilpotent Lie group G with Γ ↪→ G as a lattice. This
G is the Mal’cev completion of Γ.
Further, Aut Γ � G.

The homogeneous space X = G/Γ is a K(Γ, 1).
The action Aut Γ � X induces the usual action on π1(X, [e]) = Γ.
Example: The 3–dimensional Heisenberg group.
Let Gk be the Mal’cev completion of Γk. Fix Xk = Gk/Γk. So
Modg,1 acts on Xk, fixing the first problem.
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More About Nilpotent Homogeneous Spaces

Theorem (Nomizu)

Let X be a compact manifold that is a homogeneous space of a
connected nilpotent Lie group G with Lie algebra g. Then the
left-propagation map L : C∗(g)→ C∗(X; R) induces an isomorphism
H∗(g)→ H∗(X; R).

For C ∈ Cm(X; R), there is a unique v(C) ∈ Cm(g) such that for
each α ∈ Cm(g): ∫

C
L(α) = α(v(C))

The chain map v : C∗(X; R)→ C∗(g) induces H∗(X; R) ∼= H∗(g).
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Nilmanifold “Approximations” to Σ

As before, Gk is the Mal’cev completion of Γk, and Xk = Gk/Γk.
Let gk be the Lie algebra of Gk.

Then Xk is a K(Γk, 1), there is an action λ : Modg,1 � Xk, and
v : C∗(Xk; R)→ C∗(gk) induces H∗(X; R) ∼= H∗(gk).
Set Vk = C3(gk)/B3(gk).
By Igusa–Orr (2001), H3(Γk) is torsion-free. So we have a
Modg,1–equivariant embedding:

H3(Xk) ↪→ H3(Xk; R) ∼= H3(gk) ↪→ Vk
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The Crossed Homomorphism

For φ ∈ Diff(Σ; ∂Σ), pick a homotopy Fφ from i to λ([φ]) ◦ i ◦ φ−1.

Definition

The extended kth Morita map is:

εk : Modg,1 → Vk

[φ] 7→
[
v
(
(Fφ)∗(CΣ × [0, 1])

)]
εk is a crossed homomorphism and is independent of choices other
than i : Σ→ Xk.
[εk] ∈ H1(Modg,1;Vk) does not depend on i.
εk extends εk, and [εk] 6= 0.

Theorem Statement
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Back to the Johnson Homomorphism

Let lk+1 be defined by:

0→ lk+1 → gk+1 → gk → 0

Let d2 also denote the differential from the spectral sequence from
this extension:

d2 : H3(gk)→ H1(gk;H1(lk+1))

Let V ′k = C2(gk+1)/(g(1)
k+1 ∧ lk+1).

H1(gk;H1(lk+1)) ↪→ V ′k and there is a Modg,1–equivariant
d̃2 : Vk → V ′k extending d2.

Definition

Define ε′k = d̃2 ◦ εk.
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The crossed homomorphism ε′k extends τk

Proof that ε′k extends τk.

Ig,1(k)
τk //

τ̃k

%%JJJJJJJJJ

εk|Ig,1(k)

��8
88

88
88

88
88

88
88

88
Hom(H,Lk+1)

��
H3(Γk)

d2
//

� _

��

H1(Γk;H1(Lk+1))� _

��
H3(gk)

d2
// H1(gk;H1(lk+1))
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Remarks

Problem: Adapt these methods to work better for direct
computation.

Remark: The use of Diff(Σ, ∂Σ) and integration suggests
connections between invariants of diffeomorphism groups and
Modg,1.
Example: There is a connection between extended flux on
Symp(Σg,∗, ω) and τ2.
Remark: There is a related topological construction for τk on
AutFn (in progress).
Question: What is the “best possible” range for a crossed
homomorphism extending τk?
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