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Torelli groups

Sg = surface of genus g

Mod(Sg) = mo(Homeo™ (Sg))
— ,n.irb

(Mg)

Mg = moduli space
Definition of the Torelli group Z(Sg):

1 — ZI(Sg) — Mod(Sg) — Sp(2g,Z) — 1
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Elements of the Torelli group

Dehn twists about separating curves

Bounding pair maps

Talp "
Theorem (Birman '71 + Powell '78)
These elements generate Z(S;).
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Cohomological dimension

G = discrete group
Y = K(G,1)
H*(G, M) is defined as H*(Y, M)

cd(G) = sup {H"(G, M) #0 some M}
Eilenberg-Ganea (+ Stallings, Swan):

If cd(G) # 2, then cd(G) equals the
smallest dimension of a K(G,1).

Examples: c¢d(Z") = n, cd(F,) =1
Harer 1986, Culler—Vogtmann 1986 + Mess 1990, Ivanov 1984:

ved(Mod(Sg)) = 4g — 5
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Main theorems

Theorem (Mess >, BBM <)
For g > 2, we have cd(Z(Sz)) = 3g — 5.

Theorem (BBM)
For g > 2, we have H3z_5(Z(Sg),Z) is infinitely generated.

Theorem (Mess, new proof BBM)

Z(Sy) is an infinitely generated free group, with one Dehn twist
generator for each homology splitting.

K(Sg) = (Tc : ¢ separating)

Theorem (BBM)
For g > 2, we have cd(K(Sg)) = 2g — 3.



Genus 2

General principle: if G acts on a tree X, X/G is a tree, and edge
stabilizers are trivial, then G is freely gen. by vertex stabilizers.
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Genus 2

General principle: if G acts on a tree X, X/G is a tree, and edge
stabilizers are trivial, then G is freely gen. by vertex stabilizers.
The quotient tree for Z(S,) is infinitely many copies of

glued along their distinguished vertices.

u}
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Theorems

Dimensions of mapping class groups

ved(Mod(Sg)) = 4g —5
cd(Z(%)) = 3g-—5
cd(K(Sg)) = 28-3
cd(SZ(Sg)) = g—1 (Brendle-M)
SI(Sg) = {f € I(S,) : if = fi}
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Proof that

cd(Z(S,)) < 3g — 5
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X = contractible CW-complex
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G = group

X = contractible CW-complex
GOX

~> Cartan—Leray Spectral Sequence

cd(G) < sup{cd(Stab(c)) 4+ dim(o)}

where the supremum is over cells o of X.

A bound on cohomological dimension due to Quillen
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W
y z
Nonnegativity ~» 0 < t < 2.
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(2,1)

| © 1,2)
b
d c
| e (0,0)
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!
e
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The Complex of Minimizing Cycles
Cells

Let x € H1(S,Z) be fixed.
¥ = the set of isotopy classes of oriented curves in S.

{1-cycles} <> R”

Let M be an oriented multicurve with no null-homologous
subcycles.

CelllM)={ceR”

€ nonnegative,
¢ supported in M,

C represents x }
Fact: Cell(M) is a polytope.
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The Complex of Minimizing Cycles
Definition

B(S) = the Complex of Minimizing Cycles

B(S) = [ Cell(Mm)/ ~
M

Equivalence relation: identify faces that are equal in R

Theorem (BBM)
B(Sg) is contractible.
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New proof of contractibility

The Complex of Minimizing Cycles

Surgery on 1l-cycles

Let ¢ be a nonsimple 1-cycle representing x.

c= Zk,-c,-

t

N

ﬁ

Fact: The result of surgery is a 1-cycle.
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Cell Stabilizers (checking the Quillen condition)
Recall Quillen condition:

cd(Z(Sg)) < sup{cd(Stab(c)) + dim(o)}
We have:

StabI(g)(CeII(I\/I)) = Stabz(s)(l\/l) = I(S — M)

In genus 2, stabilizers of vertices are 1-dimensional

(0

and stabilizers of edges are trivial (0-dimensional).

(=
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Infinite generation of top homology
Say G O X, where X is contractible, and
sup{cd(Stab(c) + dim(o)} < 1.

Let {v} be a set of representatives for vertices of G/X.

Cartan—Leray Spectral Sequence =

®H;(Stab(v)) — H1(G)

Therefore, to prove that (H; of) Z(S,) is infinitely generated, we
just need to show that H; of some vertex stabilizer is infinitely
generated.
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The Complex of Minimizing Cycles

Original proof of contractibility

Idea: Build analogy with Teichmiller space 7 (S).
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Original proof of contractibility

The Complex of Minimizing Cycles

Let M be an oriented multicurve of nonseparating curves.

Chamber(M) = { X € T(S)

all shortest cycles for x in X
are supported in M }

Key Fact 1. Chambers are contractible.
Key Fact 2: Chamber(M) N Chamber(M') #

= Cell(M) N Cell(M') # 0
Proof that B(S) is contractible:

are glued in the same way as the contractible chambers are glued
to form T(S), which is contractible.

Its (contractible) cells {Cell(M)}

Q.E.D.
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Analogy with Out(F,)

1 —Z(F,) = Out(F,) — GL(n,Z) — 1

Nielsen 1924 + Magnus 1934: Z(F,) finitely generated.
Theorem (BBM '06)

For n > 3, we have cd(Z(F,)) = 2n — 4.

Theorem (BBM '06)

For n > 3, we have Hy,_4(Z(F,),Z) is infinitely generated.

The proofs of the analogous theorems are incongruous.

[m]
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