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(0,2) (1,2)

(2,0)x = [d ℄ + 2[e℄ + [f ℄
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The Complex of Minimizing CylesCells Let x 2 H1(S ;Z) be �xed.S = the set of isotopy lasses of oriented urves in S .f1-ylesg $ RSLet M be an oriented multiurve with no null-homologousxxxsubyles.Cell(M) = f  2 RS :  nonnegative; supported in M; represents x gFat: Cell(M) is a polytope.
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Theorem (BBM)B(Sg ) is ontratible.
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k j

k i k   − ki j

Fat: The result of surgery is a 1-yle.
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Cell Stabilizers (heking the Quillen ondition)Reall Quillen ondition:d(I(Sg )) � supfd(Stab(�)) + dim(�)gWe have: StabI(S)(Cell(M)) = StabI(S)(M) �= I(S �M):In genus 2, stabilizers of verties are 1-dimensional
and stabilizers of edges are trivial (0-dimensional).
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In�nite generation of top homologySay G 	 X , where X is ontratible, andsupfd(Stab(�) + dim(�)g � 1:Let fvg be a set of representatives for verties of G=X .Cartan{Leray Spetral Sequene )�H1(Stab(v)) ,! H1(G )Therefore, to prove that (H1 of) I(S2) is in�nitely generated, wejust need to show that H1 of some vertex stabilizer is in�nitelygenerated.
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Analogy with Out(Fn)1! I(Fn)! Out(Fn)! GL(n;Z)! 1Nielsen 1924 + Magnus 1934: I(Fn) �nitely generated.Theorem (BBM '06)For n � 3, we have d(I(Fn)) = 2n � 4.Theorem (BBM '06)For n � 3, we have H2n�4(I(Fn);Z) is in�nitely generated.The proofs of the analogous theorems are inongruous.


