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3 Signature cocycle
>, : an oriented closed C"°“-surface of genus g
M, = mDiff {3, mapping class group

Fix a symplectic basis of H,(%,,Z)

r: M, — Sp(2g,Z) homology rep.

Z,=Ker r Torelli group
x Meyer's signature cocycle 7 € Z%(Sp(2¢,7Z), Z)
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A, B € Sp(2g,7Z), I : the identity matrix
Define Vi g C R% x R* to be
Vap=1{(2,y9) | (A" =Dz + (B-1I)y =0}

Define the pairing map on R?9 x R% by
(x1,11), (x2,y2))aB = (1 +y1) - J(L — B)yo,
@) 1

where - is the inner product in R%, J = (_1 O)

= Symmetric bilinear form on V4 p
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Define

T(A,B) — Sign (VA,B7 < . >A,B)

From Novikov additivity, 7(A, B) satisfies the
cocycle condition, i.e.

T(A,B) +717(AB,C) =71(A,BC) + 7(B,C)

= 7€ Z*(Sp(29,Z),Z) signature cocycle

CTQM, 28 March 2008 6



Properties of 7 For A, B,C € Sp(2g,Z)
(i) ABC =1 = 17(A,B)=7(B,C)=1(C,A)

(i) 7(A, 1) =1(A, A ) =0

)

)
(iii)) 7(B, A) = 7(4, B)
(iv) 7(A™, B™) = —7(A, B)
)

(v) T(CAC~',CBC™ 1) = 1(A, B)
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Remark

e We can regard 7 as a 2-cocycle of M, by r

e 7(A, B) = Sign

[ W)

L2

\ )

OP = MsU Mg U —Myp

, P is the pair of pants

mapping tori

e By definition, 7 is a bounded 2-cocycle

(i.e. |7] < 29)
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Hyperelliptic mapping class group

¢ . hyperelliptic involution

Ay={f €M, ]| fi=1uf}
fg=1,2 = A,=M,
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Fact H*(A,,Q) =0, x = 1,2 Cohen, Kawazumi

Hence [7] has a finite order in H*(A,, Z)

Fact (29 + 1)7 € B*(A,, Z)

= there exists the uniquely defined mapping

Z:{ e EQ\meZ}

A, — ——
@By 2g + 1 2g + 1
s.t. 0¢ =7|an, Meyer's function of A,
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Remark

¢ 0(f7) = —o(f)
(0=0(ff 1) = () +&(f ) = 7(f. 1)
e ¢ is a class function of A,

e o(hfhY) = 6(f), f.h € A,

[ (hfh) = é(h) + o(fh ) —7(h, fR7Y) )
o(h) + o(f) + o(h™)
\ _T(fv h_l) o T(ha fh_l) — ¢(f) )
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= an invariant of surface bundles over the circle

e 6¢p = T|a, implies ¢ is a homomorphism on the
Torelli group Z,N A, (g > 2)

(For f.heT,NA, )
S(fh) = o(f) + é(h) —7(f,h) = o(f) + ¢(h)
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Example a presentation of A, Birman-Hilden

generator : (; (1 <i<2g+1)

relation : (G116 = Gr1GiGit
G = GG (] —j| = 2)
(G Gogr1) =1
(-G C)? =1

¢; commutes with (i -+ (G-
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* (; conjugate each other (in fact (;.1 = £¢¢ 1 for

é-:Cl"'CQg—H)
g+ 1

d(¢;) = 20T 1 (for any 17)
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Put ¢(¢) = ¢((;). Using a defining relation of A,

0=¢(Cr--Cogi1” -~ C1)
= OG- Cog41) + P(Cog1+ -+ C1)
= 7(C1 -+ Cg415 Cog41 -+~ 1)
=2{(29 +1)o(¢) — 1} —2g
=2(29 +1)9(¢) — 2(g + 1)

g+

— 00 =5
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* P = (G- Gon)? e A

Dehn twist along a bounding simple closed curve

P(Vn) =

BSCC map
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g=1] A =M, =SL(2,2Z)
* Meyer, Kirby-Melvin, Sczech

. explicit formula of 7 and ¢

5(A) = —3W(A) + o(A) - (1 + sen(ix 4)

/ U:SL(2,Z) —Z the Rademacher function \
. —2c a—d _(a b
\O'(A)—Slgl’l (a—d 5 ) for A = (c d) )
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*x Atiyah --- geometric meanings of ¢
“The logarithm of the Dedekind n-function”
Math. Ann. 278 (1987), 335-380

Various inv. ass. to SL(2,Z) coincide with ¢

/ cf. Rademacher’s function, Hirzebruch signature \
defect, the special value of Shimizu L funct.

\ n invariant & its adiabatic limit, etc. /
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[9 > 2} Geometric aspects of ¢7?

x periodic auto. (of finite order) = n-invariant
(mapping torus)
* Zi-covering = von Neumann p-invariant
(15* MMM class & Rochlin inv)
* Torelli group = Casson invariant
(Heegaard splitting)
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Related works
* Kasagawa, lida
. other construction of ¢ for g = 2
* Matsumoto, Endo
- the loc. sign. of hyp. Lefschetz fibrations
* Kuno, Sato

.- - Meyer’s function in other settings
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3 Eta-invariant

M : ori. closed Riem 3-mfd — n(M) is defined

Thm Atiyah-Patodi-Singer

W : a cpt ori Riem 4-mfd s.t. OW = M,

product near M

1

U(M):§/ p1 — Sign W
W

p1 : 1% Pontrjagin form of the metric
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Remark If W is closed = Sign W =1 [, p1
For f € M,

My=%,xR/(z,t) ~ (f(x),t+1) mapping torus

Thm f € A, periodic = n(My) = o(f)

3, x S?
| finite Riem cov
M
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This is shown by using the following formula.

f € M, : periodic auto. of the order n

n—1

1
n(My) = gZT (f: ")
k=1
Moreover if f € A,
n—1
0= ¢(id) = ¢(f") = ne(f) = > _7(f, f*)
k=1
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.- 1
Cor f € M, periodic, f € A, = n(My) € 29 1 1Z

Example there exists f € M3 of order 3
s.t. its quotient orbifold ~ S%(3, 3,3, 3,3)

Then direct computation shows
2 1
Me) = — & =7
n(My) =—2 & -

= & As
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3 Relation to von Neumann rho-invariant
I' : a discrete group
M : an ori closed Riem 3-mfd
mM — I' : a surjective homo
= I'>M— M I'-covering

N 77(2)(M) Is defined von Neumann or

L? n-invariant
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Def & Thm Cheeger-Gromov
n® (M) — n(M) is independent of a Riem metric

A

p®)(M) von Neumann rho-invariant

Remark p2 (M) is an extension of rho-invariant

n, . the m-invariant ass. to v : m M — U(n)

= p =1, — n1n is independent of a Riem metric
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For f € A,
7 — Mf — My  Z-covering associated to
m My — w5

* ¢ is not multiplicative for coverings

Thm p(2)(Mf) _ ]}1_{20 o(f") ; ko(f)

Using the thm stated before and the approximation
thm of the n-inv, due to Vaillant, Lick-Schick
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I'bIy>I'9>--- : descending sequence
S.t. [F : Fk] < oo and NI’y = {1}
My = M /T, — M : T'/T-covering

Thm Vaillant, Luck-Schick
A M )
(N = 1 77( (k)
moM) = lim
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Example g=1 A€ SL(2,Z)

(1) Elliptic case (|tr A| < 2)
Let A, € SL(2,Z) have the order n

—1 -1
A3_( 1 0

)-a

PP (Ma,) =
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1 0

2/3
1
4/3

) o=
n=3
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n==~06

0 —1
I 1

)
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(2) Parabolic case (|tr A| =2) 4, = ( (1) 11? ) (beZ)

510y = s = I 00

(3) Hyperbolic case (|tr A| > 2)
pO(NL4) = 0 ($(A) = k(A) holds)
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CorIf feZ,NA, = p?& (M) =0

(¢ is @ homomorphism on Z, N A)

Remark If we restrict the above thm to the level
2 subgroup, we can obtain a relation among von
Neumann rho-inv, 1°* MMM class and Rochlin inv in
a framework of the bdd cohomology

frer =" u(My) — pP(My) in HY(S',Z) = R/Z
feM ( ) = ker{M,y — Sp(29,Z/2)}
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g Casson invariant g > 2
A {M | ori homology 3-sphere} — Z
ANM) ~ #{m M — SU(2) irr rep}/con]

* Theory of characteristic classes of surface bundles
we can consider the Casson inv of ZHS? from the

view point of M, Morita
K, = (BSCC map) C Z,

bounding simple closed curve
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Fix a Heegaard splitting of S
$8 =M, U, —H, (1, € M,)
H, : handle body of genus g

Ky f — Mf:HgULgf —H,
AT\ S 7HS?
Z > \M)
A* -+ sum of two homomorphisms
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Morita’s homo dj : K, — Q core of Casson inv

Johnson’s homo - - - Main topic of the Conference

1 I
Thm ¢ = gdo on A, NK,

Example ¢, ¢ A, N K, : a BSCC map of genus h

do(¥n) = 3¢(n)
B P
29 + 1 I
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15* Mumford-Morita-Miller class e; € H*(M,, Z)
E = X : oriented ¥, bundle
Tn={veTFE|mwv=0}: tangent bundle along
the fiber
e = Euler(Tw) € H*(E,Z)
m: HYE,Z) — H*(X,Z) Gysin homomorphism
= e; = m(e?) € H*(X,Z) the 13* MMM class
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H?(BDiff, %, Z) = HX(K(M,,1),Z) = H*(M,, Z)
(Diffy3J, contractible for g > 2 Earle-Eells)
= e € H*(M,,7Z)

* There exist canonical 2-cocycles representing e;/Q

e —37 : signature cocycle

e c : Intersection cocycle

(fix a crossed homomorphism of M)
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there exists uniquely defined mapping d : M, — Q

s.t. 0d =c+ 37

do = d|,

.

\

Fact Morita

does not depend on the choice of

crossed homomorphisms
is a generator of H'(K,, Z)Ms

do : IC; — Q Morita’'s homomorphism
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3 Bounded cohomology
GG : a discrete group, A =R, Z
C¥(G) ={c: Gx---xG — A the range is bdd}
6: Cy(G) — CYH(G)
oc(guy -+ s gpr1) = (g2, -+, Gpr1) — (9192, 935 - - - s Gp+1)

A (=DPe(g, - GoGpe)
1 (_1)p+1c(g1, e 7gp)

H}(G,A) = H*(C;(G),d) bounded cohomology
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We want to consider e; for a surface bdl over S!.

However, for a holonomy homo f : mS' — M,,
f*e1 = 0, because H*(S',Z) = 0.

Fact
(1) e1 is a bounded cohomology class

(2) HA(S',Z) = HX(Z,7) = R/Z Ghys

= f*e; might be nontrivial as a bdd class
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* Rochlin invariant
(M, ) : ori. closed spin 3-mfd with spin str. «
There exists a cpt ori. spin 4-mfd (W, 3)
s.t. OW = M and 8|y =
Define
Sign W

uw(M, o) = mod Z

By Rochlin’'s theorem, it does not depend on W
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Thm Fix a spin str o on X,
If Im{f : mS* — M,} C M,(2)
| level 2 subgroup
ker{ M, — Sp(2g,7Z/2)}
= frer ="u(My,@) — p?(My) mod Z
& 1 spin str on My s.t. &lper = @

Remark Kitano

If Inf CZ, = fe; is given by the Rochlin inv
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*x A formula for p (due to Miller-Lee)
W, M : as before and assume “spin”
D : Dirac op. of M acting on the spinor fields
= np(M) is defined (D : self-adjoint elliptic op.)

Then

1

ind(D) = Y

ke —{h+77D(M)}

h : dim of the space of harmonic spinors
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Combining this and the index thm due to APS

Sign W + 8 ind(D) = —n(M) — 4 {h + np(M)}

Fact ind(D) is even

Dividing both sides by 16 and taking mod Z

Thm Miller-Lee
1 1
(M, o) = —EU(M) ~ 1 {h+np(M)} mod Z
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Combining Thm and our formula for ¢4

Cor For f € M,(2)

1 A 1
frert =" = —n®(Wly) = 7 {h+ np(My)} mod Z
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