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1. Ultimate goal and strategy, Mg,1 vs Hg,1

¶ ³

Θ3 :Group of homology cobordism classes of homology 3-spheres

ρ : Θ3 −→−→ Z2 (Rohlin invariant)

For some time, there was a weak conjecture that the above is isomorphic

but, Furuta, Fintushel-Stern proved: Θ3 has infinite rank, using gauge theory

Brieskorn spheres Σ(2, 3, 6k − 1) (k = 1, 2, · · · ) are linearly independent

0 −→ Kerρ −→ Θ3 ρ−→ Z2 −→ 0

split ? ⇔ triangulability of topological manifolds

Matumoto, Galewski and Stern
µ ´
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¶ ³

known homomorphisms

Θ3→ Q

those defined by Frφyshov and Ozsváth-Szabó (Heegaard Floer homology)

but it seems that they are conjectured to be equal...

candidate: Neumann-Siebenmann, Fukumoto-Furuta-Ue, Saveliev

ν :=

7∑

i=0

(−1)
i(i+1)

2 rank HF i (instanton Floer homology)

recall:
7∑

i=0

(−1)irank HF i = 2λ Casson invariant

Taubes
µ ´
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⇒ want to define homomorphisms

Θ3→ Q

extremely difficult problem, just “an atempt” for the moment...
¶ ³

Garoufalidis-Levine introduced (based on works of Goussarrov and Habiro)

Hg,1 : group of homology cobordism classes of homology cylinders over Σg,1

central extension

0→ Θ3 = H0,1→ Hg,1→ Hg,1→ 1
µ ´

Mg,1 = {(Σg,1 × I, ϕ); ϕ : Σg,1
∼= Σg,1 × {1}}

Hg,1 = {(homology Σg,1×I, ϕ); ϕ : Σg,1
∼= Σg,1×{1}}/homology cobordism
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Strategy¶ ³

Define infinitely many cohomology classes in

H2(Hg,1;Q)

which may be conjecturally equivalent to the Euler class

χ(Hg,1) ∈ H2(Hg,1;Θ
3)

of the above central extension
µ ´

monodromy representation:

Mg,1 −→ Aut0π1Σg,1

is an isomorphism (Dehn-Nielsen-Zieschang), where Aut0 denotes
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symplectic automorphism group in the sense:

should preserve a particular element ζ ∈ π1Σg,1
∼= F2g

Mg,1 = {monodromy of Σg,1-bundle over S1}

On the other hand, a theorem of Stallings: two homologically isomorphic

groups have isomorphic Mal’cev completions

⇒ Garoufalidis-Levine define a representation

Hg,1 −→ Aut0(Mal’cev completion of π1Σg,1)

which has a large kernel containing Θ3

An analysis of the above representation yields many elements in H∗(Hg,1;Q)
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2. Symplectic automorphism groups of free nilpotent groups

Γ = π1Σg,1
∼= F2g 3 ζ = [α1, β1] · · · [αg, βg]

lower central series:

Γ0 = Γ, Γ1 = [Γ, Γ], Γ2 = [Γ1, Γ], · · · , Γd = [Γd−1, Γ], · · ·
d-th nilpotent quotient of Γ:

Nd = Γ/Γd (d = 1, 2, · · · ); N1 = H = H1(Σg,1;Z)

particular elements:

ζd = image of ζ in Nd

ζ1 = 0 ∈ N1 = H but,

ζ2 = ω0 =
∑g

i=1 xi ∧ yi ∈ Λ2H ∼= Γ1/Γ2 ⊂ N2
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Definition¶ ³

Two subgroups of Aut Nd:

Aut′0Nd = {ϕ ∈ Aut Nd; ϕ(ζd) = ζd}
Aut0Nd = p(Aut′0Nd+1) (Garoufalidis-Levine)

p : Aut Nd+1→ Aut Nd natural projection.
µ ´

Aut0N1 = Aut0H
∼= Sp(2g,Z), Aut′0N1

∼= GL(2g,Z)

projective system of groups:

· · · −→ Aut0Nd −→ Aut0Nd−1 −→ · · · −→ Aut0N2 −→ Aut0N1.

obtain representations:

ρd :Mg,1 −→ Aut0Nd, ρ∞ :Mg,1
∼= Aut0Γ −→ lim←−d→∞Aut0Nd
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induced Johnson filtration {Mg,1(d)}d:
Mg,1(d) = Ker(ρd :Mg,1→ Aut0Nd)

Mg,1(1) = Ig,1: Torelli group

and the Johnson homomorphisms {τd}d
τd = ρd+1|Mg,1(d) :Mg,1(d) −→ hg,1(d) ⊂ Hom(H,Lg,1(d + 1))
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structure of Aut0Nd:
¶ ³

Lg,1 =
⊕∞

d=1Lg,1(d) : free graded Lie algebra on H = H1(Σg,1;Z)

Lg,1(1) = H, Lg,1(2) ∼= Λ2H, Lg,1(d) ∼= Γd−1/Γd

hg,1 =
⊕∞

d=0 hg,1(d) : Lie algebra of symplectic derivations of Lg,1

hg,1(d) = {D ∈ Hom(H,Lg,1(d + 1)); D(ω0) = 0}
µ ´

Poincaré duality H∗ ∼= H induces:

hg,1(d) ∼= Ker([ , ] : H ⊗ Lg,1(d + 1)→ Lg,1(d + 2))
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Garoufalidis and Levine:

1 −→ hg,1(d) −→ Aut0Nd+1 −→ Aut0Nd −→ 1.

traces¶ ³

trace(2k + 1) : hg,1(2k + 1) −→ S2k+1H

trace(2k + 1) vanishes on Image τ2k+1 ⇒
Coker ρd becomes larger and larger

µ ´
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¶ ³

trace(2k + 1) : hg(2k + 1)
surj−→ S2k+1H

hg(2k + 1) ⊂ Hom(H,Lg(2k + 2)) 3 (f : H → Lg(2k + 2)) 7→

trace

(
∂f (ui)

∂uj

)abel

∈ S2k+1H

u1, · · · , ug, ug+1, · · · , u2g : symplectic basis

∂f (ui)
∂uj

: Fox free differential
µ ´
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Garoufalidis-Levine, Habegger:

ρd :Mg,1→ Aut0Nd extends to

ρ̃d : Hg,1 −→ Aut0Nd which is surjective

ρ̃∞ : Hg,1 −→ lim←−d→∞Aut0Nd : not injective

Θ3 ⊂ Center(Hg,1) and ρ̃d ≡ trivial on Θ3

Image(ρ̃∞) =?

Sakasai: using the concept of acyclic closure of groups due to Levine:

constructs a representation ρacy : Hg,1→ Aut Γacy and proved

Image ρacy = {ϕ ∈ Aut Γacy; ϕ(ζ) = ζ}
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3. Rational forms of the symplectic automorphism groups

Nd ⊗Q: Mal’cev completion of Nd ⇒

Aut Nd ⊂ Aut(Nd ⊗Q) linear algebraic group

this induces

Aut0Nd ⊂ Aut0(Nd ⊗Q) discrete, Zariski dense, subgroup

¶ ³

1 −→ IAut0Nd −→ Aut0Nd −→ Sp(2g,Z) −→ 1.

0 −→ hg,1(d) −→ IAut0Nd+1 −→ IAut0Nd −→ 1
µ ´
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Proposition¶ ³

Aut0Nd can be embedded into Aut0(Nd ⊗Q) as a Zariski dense subgroup

split short exact sequence:

1 −→ IAut0(Nd ⊗Q) −→ Aut0(Nd ⊗Q) −→ Sp(2g,Q) −→ 1

IAut0Nd is mapped to IAut0(Nd ⊗Q) as a Zariski dense subgroup
µ ´

Lie algebra of Aut0(Nd ⊗Q):

rational forms : h
Q
g,1 = hg,1 ⊗Q =

∞⊕

k=0

h
Q
g,1(k)

positive ideal : h
Q+
g,1 =

∞⊕

k=1

h
Q
g,1(k)
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Definition¶ ³

truncated Lie algebras:

h
Q
g,1[d] = h

Q
g,1/I(d), h

Q+
g,1 [d] = h

Q+
g,1 /I(d)

where I(d): ideal of derivations with degree ≥ d
µ ´

Additively, we can write

h
Q
g,1[d] =

d−1⊕

k=0

h
Q
g,1(k), h

Q+
g,1 [d] =

d−1⊕

k=1

h
Q
g,1(k).
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Theorem 1¶ ³

The Lie algebras of the algebraic groups Aut0(Nd ⊗Q) and IAut0(Nd ⊗Q)

are isomorphic to the truncated Lie algebras

h
Q
g,1[d], h

Q+
g,1 [d]

respectively.
µ ´
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4. Group version of the trace maps

Theorem 1 implies the group version of the trace maps:

t̃race(2k + 1) : IAut0Nd −→ S2k+1HQ (2k + 1 ≤ d− 1)

and we have a homomorphism

t̃race : IAut0Nd
i⊂ IAut0(Nd ⊗Q) −→ Λ3HQ ⊕

⊕̀

k=1

S2k+1HQ

this can be extended to a crossed homomorphim

t̃race(2k + 1) : Aut0Nd −→ S2k+1HQ
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Theorem 2¶ ³

For any d ≥ 2, let ` denote the largest integer such that 2`+1 ≤ d−1. Then

the group version of traces gives rise to a crossed homomorphism

t̃race : Aut0Nd −→ Λ3HQ ⊕
⊕̀

k=1

S2k+1HQ

µ ´

Conjecture 1¶ ³

The above theorem gives the abelianization of IAut0Nd modulo torsions:

H1(IAut0Nd;Q) ∼= Λ3HQ ⊕
⊕̀

k=1

S2k+1HQ

µ ´
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5. A representation of Hg,1

ρ̃d : Hg,1 −→ Aut0Nd is surjective for all d, and we have a representation

Aut0Nd −→

Λ3HQ ⊕

⊕̀

k=1

S2k+1HQ


o Sp(2g,Q)

by letting d go to the infinity, we obtain

Theorem 3¶ ³

There exists a homomorphism

ρ̃ : Hg,1 −→

Λ3HQ

∞⊕

k=1

S2k+1HQ


o Sp(2g,Q)

whose image is Zariski dense.
µ ´
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IHg,1 := Ker(Hg,1 −→ Sp(2g,Q)), Torelli homology cylinders

Corollary¶ ³

The subgroup IHg,1 of Hg,1 is not finitely generated because the rank of its

abelianization is already infinite.
µ ´

Ig,1: finitely generated by Johnson for g ≥ 3

Sakasai : the abelianization of the IA automorphism group IAut F
acy
n of the

acyclic closure F
acy
n of a free group Fn of rank n ≥ 2 has infinite rank.

¶ ³

Does the homomorphism ρ̃ give the abelianization of the group IHg,1 modulo

torsions?
µ ´
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6. Cohomology classes of Hg,1

ρ̃ induces a homomorphism in cohomology:
¶ ³

Q[c1, c3, · · · ]⊗H∗

Λ3HQ ⊕

∞⊕

k=1

S2k+1HQ




Sp

−→ H∗(Hg,1;Q)

µ ´

Question¶ ³

How non-trivial are these classes ?
µ ´

restriction to H∗(Mg,1;Q):

Q[c1, c3, · · · ]⊗H∗(Λ3HQ)Sp −→ H∗(Hg,1;Q) −→ H∗(Mg,1;Q)
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H∗(Λ3HQ)Sp gives rise to all the MMM classes

Kawazumi-M: image =tautological subalgebra

ρ̃ = trivial on Θ3 ⇒ ρ̃ factors through

ρ̄ : Hg,1 −→ lim←−
d→∞

Aut0Nd

and we have

Θ3 −→ Hg,1 −→ Hg,1 −→ lim←−
d→∞

Aut0Nd

−→

Λ3HQ

∞⊕

k=1

S2k+1HQ


o Sp(2g,Q)
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Definition¶ ³

t̃2k+1 := t̃race
∗
(ι2k+1) ∈ H2(lim←−d→∞Aut0Nd;Q) and consider

ρ̄∗(t̃2k+1) ∈ H2(Hg,1;Q)

where ι2k+1 ∈ H2(S2k+1H ;Q)Sp denotes the generator
µ ´

Main Conjecture¶ ³

We have isomorphisms:

H2(Hg,1;Q) ∼= Q < e1, ρ̄
∗(t̃3), ρ̄∗(t̃5), · · · >

H2(Hg,1;Q) ∼= Q < e1 >
µ ´

H2(Mg,1;Q) ∼= Q < e1 > by Harer
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Lie algebra version: t2k+1 = trace(2k + 1)∗(ι2k+1) ∈ H2(hQg,1)4k+2

Main Conjecture, Lie algebra case¶ ³

We have an isomorphism:

H2(hQg,1)
Sp ∼= Q < e1, t3, t5, · · · >

µ ´

via a theorem of Kontsevich:

t2k+1 ⇔ µk ∈ H4k(Out F2k+2;Q) and t2k+1 6= 0 ⇔ µk 6= 0

M.: t3 6= 0 Conant and Vogtmann: µ2 6= 0

H2(hQg,1)6
∼= Q (Hatcher-Vogtmann), H2(hQg,1)10

∼= Q (Ohashi)

unknown for t2k+1, µk (k ≥ 3)
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¶ ³

If true ⇒ obtain series of homomorphisms

t̂2k+1 −→ Θ3 (k = 1, 2, · · · )
µ ´
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Related difficult questions:
¶ ³

1. Is Hg,1 perfect ? like in the case ofMg,1

2. Does H∗(Hg,1;Q) stabilize ? like in the case of H∗(Mg,1;Q)

Harer stability theorem

3. Does the Grothendieck Riemann-Roch theorem (or the Atiyah-Singer index

theorem for families), applied to the Chern classes of the Hodge bundle and the

MMM-classes of odd indices, continue to hold in the setting of homological

surface bundles ? By Theorem 3 and its consequence, both classes are defined

as elements of H∗(Hg,1;Q).
µ ´
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