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Basic setup

Σ is an oriented genus g surface with one puncture
Γ = π0(Diff+(Σ)) is the mapping class group of Σ
π1 = π1(Σ) is the fundamental group of Σ.

The SU(2) moduli space is by definition

MSU(2) = {$ : π1 → SU(2)}/SU(2).

The mapping class group acts onMSU(2) via the outer action on
π1.
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A symplectic manifold

Let γ be a small loop winding once around the puncture. Then
insideMSU(2) there is a subspace

M′ = {$ : π1 → SU(2) | $(γ) = −I}/SU(2)

This is clearly preserved by the action of Γ.

Fact
The set M′ is a smooth symplectic manifold. The mapping class
group acts by symplectomorphisms.
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Poisson structure

Symplectic manifolds are also Poisson manifolds, meaning there
exists a Lie bracket

{−,−} : C ∞(M′)× C ∞(M′)→ C ∞(M′).

This satifies {fg , h} = f {g , h}+ {f , h}g .
The mapping class group action on C ∞(M′) is by Lie algebra
homomorphisms.
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Deformation quantization

Definition

A star product onM′ is an associative h-bilinear product

∗ : C ∞(M′)[[h]]× C ∞(M′)[[h]]→ C ∞(M′)[[h]]

satisfying
f ∗ g = fg mod h and
(f ∗ g − g ∗ f )/h = c{f , g} mod h

for any f , g ∈ C ∞(M′).

A star product is a “deformation” of the usual commutative
multiplication of formal power series “in the direction of” the
Poisson bracket.
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Equivalence of star products

Two star products ∗, ∗′ are equivalent if there exists a linear map

T = Id+
∞

∑
j=1

hjTj : C ∞(M′)[[h]]→ C ∞(M′)[[h]]

intertwining them, ie. satisfying T (f ∗ g) = T (f ) ∗′ T (g)
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Philosophy

The symplectic and hence Poisson structures onM′ are mapping
class group invariant.
Hence two questions are natural:

Does there exist Γ-invariant star products?
To what extent is such a star product unique?

The latter question is partially answered by

Theorem (Andersen)

Provided H1(Γ, C ∞(M′)) = 0, any two equivalent Γ-equivariant
star products are identical.
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Obvious question

Theorem (Andersen)

Provided H1(Γ, C ∞(M′)) = 0, any two equivalent Γ-equivariant
star products are identical.

Question

Does H1(Γ, C ∞(M′)) vanish?

This is too hard to handle directly, at least for me.
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Changing module

LetMSL2(C) denote the SL2(C) moduli space. This is an affine
algebraic set, so we may let O = O(MSL2(C)) denote the space of
regular functions.

Remark

Notice that M′ ⊂MSU(2) ⊂MSL2(C). The latter inclusion is
non-trivial but easy.

Main Theorem

For g ≥ 2, we have H1(Γ,O) = 0.
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Translating the coefficients

Main Theorem

For g ≥ 2, we have H1(Γ,O) = 0.

We will prove this in two steps:
Identify O with another space which is easier to work with.
Make and prove a more general statement.
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Multicurves

Definition

A multicurve is the homotopy class of an embedding⊔
n

S1 → Σ,

such that no component bounds a disc. (Informally, a finite number
of disjoint non-trivial circles on Σ, or a closed 1-submanifold).

We let S denote the set of multicurves in Σ. Clearly Γ acts on S .
Let CS denote the complex vector space freely spanned by S .
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An isomorphism

Theorem (Bullock, Frohman, Kania-Bartoszyńska; Skovborg)

There is a Γ-isomorphism CS → O.

This isomorphism is inspired by Goldman’s notion of holonomy
functions on the moduli space.
Clearly the Main Theorem is now equivalent to the vanishing of
H1(Γ, CS).
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Generalizing the Main Theorem

In fact, we prove a somewhat stronger theorem.
Let A be any abelian group, and let

AS = Mapf (S , A)

denote the set of all finite formal A-combinations of elements of S ,
or equivalently the set of maps S → A which vanish for all but
finitely many e ∈ S .

Theorem

If A is torsion-free, H1(Γ, AS) = 0.
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Splitting the coefficients

Let R ⊂ S denote a set of representatives of the Γ-orbits of S . For
e ∈ R , let

Me = A(Γe) = Mapf (Γe, A) and M̂e = Map(Γe, A).

Clearly we have decompositions

AS =
⊕
e∈R

Me (1)

and Map(S , A) = ∏e∈R M̂e as Γ-modules.

16 / 29



Motivation Asking the right question Preparations Proving the general statement Final remarks

Splitting the cohomology

The splitting (1) yields

H1(Γ, AS) =
⊕
e∈R

H1(Γ, Me)

and we must prove that

H1(Γ, Me) = 0

for each e ∈ R .

Remark
We have |Γe| = ∞ unless e = ∅. In that case
H1(Γ, M∅) = H1(Γ, A) = Hom(Γ, A) = 0, at least if g ≥ 3 or if
g = 2 and A has no 2 and 5-torsion.
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Exact sequences

The short exact sequence 0 //Me //M̂e
//M̂e/Me

//0
of Γ-modules induces a long exact cohomology sequence

H0(Γ, M̂e)
p

// H0(Γ, M̂e/Me) // H1(Γ, Me)
i // H1(Γ, M̂e)

(1) Describe/compute H1(Γ, M̂e).
(2) Use (1) to prove that i = 0.
(3) Prove that p is surjective, so that i is injective.
If the zero map is injective, its domain must be zero!
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Step (1): Computing H1(Γ, M̂e)

Let Γe ⊆ Γ denote the stabilizer of e. Then a theorem from the
standard group cohomological toolbox, known as Shapiro’s Lemma,
gives an isomorphism

H1(Γ, M̂e) ∼= H1(Γe , A) ∼= Hom(Γe , A)

The isomorphism is given explicitly as follows: A cocycle
u : Γ→ M̂e = Map(Γe, A) is mapped to

eve ◦ u| : Γe → M̂e → A

In other words, one restricts u to the stabilizer of e and then picks
out the coefficient of e.

19 / 29



Motivation Asking the right question Preparations Proving the general statement Final remarks

Step (2): Proving that H1(Γ, Me)→ H1(Γ, M̂e) is zero

Let u : Γ→ Me be a cocycle. We must prove that, for any f ∈ Γe ,
the coefficient of e in u(f ) is zero.
First we handle a rather generic case, which almost suffices:
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Step (2): A generic case

Asssume that α is a SCC such that the twist τα lies in Γe , and that
some component of e is not a parallel copy of α. Find a SCC β
disjoint from α such that τβe 6= e. Then τα and τβ commute,
implying

u(τατβ) = u(τα) + ταu(τβ) = u(τβτα) = u(τβ) + τβu(τα)

which we rewrite as

(1− τβ)u(τα) = (1− τα)u(τβ). (2)

Now, the coefficient of e on the RHS of (2) is 0. Hence, if u(τα)
contains the non-zero term ae, it must also contain the term
aτ−1

β e. By induction it contains aτ−n
β e for all n = 1, 2, . . ..

This contradicts the assumption that u took values in Me .
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Step (2): Using relations in Γ

Now assume that e is simply a number of parallel copies of the
SCC ε. Any such ε can be realized as the ε in a subsurface of genus
1 with two boundary components as below:

α

β

γ

δ ε

Now, the chain relation states that (τατβτγ)4 = τδτε. Applying the
cocycle condition to this easily implies that the coefficient of e in
u(τε) is zero.
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Step (2): Final remarks

Now for the general case: Let f ∈ Γe . Since ũ = eve ◦ u| is a
homomorphism and A is torsion-free, it suffices to prove that
ũ(f N) = 0 for some large N.

Choose N so large that f N fixes each component of e. Then f N

can (though not unambigously) be thought of as a diffeomorphism
of the surface obtained by cutting along e.

Hence f N is isotopic to a product of Dehn twists which are all
disjoint from e.
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Step (3): Almost invariant colorings

Some terminology: Let G be a group, X a G -set (that is, a set
equipped with a transitive action of G ) and C a set.

A (C -)coloring of X is a map c : X → C .
A coloring is almost invariant if, for each g ∈ G , the identity
c(x) = c(gx) fails for only finitely many x ∈ X .
Two colorings are equivalent if they assign different colors to
only finitely many elements of X ; this is clearly an equivalence
relation on the set of C -colorings.
A coloring is trivial if it is equivalent to a monochromatic
(constant) coloring.
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Step (3): Colorings of multicurves

If we apply the above to the situation G = Γ, X = Γe we have

Proposition

For g ≥ 2, any almost invariant coloring of Γe is trivial.

Recall that H0(G , N) = NG , the G -invariant elements of N. Hence
an element of H0(Γ, M̂e/Me) is represented by an element
m ∈ Map(Γe, A) such that m− gm ∈ Me for each g ∈ Γ. Hence,
m(x) = m(g−1x) for all but finitely many x ∈ Γe, so m is precisely
an almost invariant A-coloring of Γe.
By the above proposition, m is almost constant and hence in the
image of

H0(Γ, M̂e)→ H0(Γ, M̂e/Me).

25 / 29



Motivation Asking the right question Preparations Proving the general statement Final remarks

Step (3): Proving the coloring theorem

Let c : Γe → C be an almost invariant coloring. The crucial
observation is that if τα is a Dehn twist and x ∈ Γe such that
ταx 6= x , then c(τn

α x) stabilizes for large enough n.
This stable color is the future of (τα, x). Similarly one defines the
past of such an “interesting pair”.

Lemma

The future equals the past.

More explicitly, there exists an N such that for all n, m ≥ N, we
have c(τ−m

α x) = c(τn
α x).
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Step (3): Proof of “fate” lemma

Since g ≥ 2, there exists a SCC β disjoint from α which also makes
an interesting pair with x , ie. τβx 6= x .
Then {τa

α τb
β x}, a, b ∈ Z, is an Z2-indexed family of distinct

multicurves. By the almost invariance, outside some bounded
region in Z2 the color of a multicurve does not change by moving
up, down, left or right. The future and past of (τα, x) can be
connected by such moves.
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Step (3)

We have in fact already proved the i = 0 case of the following
lemma:

Lemma

Assume that α and β are SCCs with i(α, β) ≤ 1, such that (τα, x)
and (τβ, x) are both interesting. Then fut(τα, x) = fut(τβ, x).

The proof of the i = 1 case is essentially just a reduction to the
i = 0 case.

The above lemmas (and a few more) together with known
generating sets for the mapping class group suffice to prove the
proposition.
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Comments

The “multicurve functions” take real values on the SU(2) moduli
space, being defined using the trace. Hence one may consider the
real subspace RS ⊂ O, and the restriction map

r : RS → C ∞(M′)

At least two questions are relevant:
Is r injective?
Is the image of r dense?

Moreover, one may ask
Would affirmative answers to any of the above help answer the
original question?

29 / 29


	Motivation
	Asking the right question
	Preparations
	Proving the general statement
	Final remarks

