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The Geometry of the Gauss Product

R. C. Penner

Introduction

In Disquisitiones Arithmeticae [1801], Gauss defined a law of composition of PSL(2,7)
classes of suitable binary integral quadratic forms. Here we give a new geometric interpre-
tation of this Gauss product in the case of definite forms; indeed, we shall find that the
product is intimately connected with incidences of hypercycles (that is, loci equidistant
to a geodesic) on the modular curve, and the product will be found to be analogous to
addition on a non-singular cubic but using suitable hypercycles (instead of lines). We shall
also elaborate briefly on the case of indefinite forms, which was actually our starting point.

This entire note is based on the group I' = P§ L(2,Z), which is intended as a paradigm
for the general case of a finite-index subgroup I' < PS L(2,Z). Throughout our discussion,
though, we shall keep in mind the more general situation, say, of torsion-free finite-index
subgroups I' < PSL(2,Z). Many of our constructions generalize readily as we briefly
discuss at the end; however, a suitable geometric interpretation of the Gauss product

should give natural analogues of the Gauss groups for each such I', and this we have not
achieved.

Given the very classical nature of what we describe here and the activity in this realm
during the period 1940-1970, we remain surprised that this picture of the Gauss product
seems to be new. On the other hand, our main result is really about an algorithm for
computing Gauss products rather than about the product itself. We can furthermore
imagine that nobody bothered to return to the baby quadratic case of ideal class groups in
the special case of definite forms armed not only with hyperbolic geometry but also with
the 1968 extension of the product described by Butts-Estes-Pall in [BE] and [BP]. Indeed,
recent surveys have described only special cases of this extension (and in fact, we must
extend their formulation a bit further still below).

We have strived to keep this note entirely self-contained starting from scratch at
least in the definite case. The only exceptions are that some routine calculations will
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be suppressed, our survey below of the contemporary number-theoretic point of view on
this is, after all, just a survey without proofs, and our starting point is Dirichlet’s [1851]
formulation of the product rather than Gauss’.

We begin by gently introducing and surveying the elementary algebra from first prin-
ciples and then go on to give a self-contained proof of the existence of the Gauss product
in the general (i.e., either definite or indefinite) case in Theorem 6, and our new techniques
are already of value here (cf. Lemma 1 below); it is worth emphasizing that we are not
saying anything new about the Gauss product at this point other than that there is a
well-definedness property of an algorithm for computing it. (Experts should certainly skip
the first two sections which are elementary, partly expository, and included for complete-
ness and just glance at Lemma 1 and Theorem 6 in the third section.) We then specialize
to the definite case and undertake the geometric study of fundamental roots. Qur main
result is Theorem 13 giving an explicit geometric formulation of the Gauss product, which
1s in a sense insufficient for a completely geometric description as we shall discuss. Vari-
ous number-theoretic and geometric points are finally described in closing remarks, but it
remains to be seen whether our formulation of the product might be of real utility in num-
ber theory; in the other direction, we can say that the existing databases of class numbers
and related data can be interpreted as describing various (reasonably arcane) enumerative
behaviors of hypercycles in the modular curve.

This note was originally composed as a letter from the author to Yuri Manin on the
happy occasion of his birthday, and this explains the informal parenthetical remarks, most
of which I have decided to leave in the text.

I am lucky to have Dennis Estes as a colleague here at USC and want to thank him
for sharing his time and insights over the last months and years. Let me also thank
Francis Bonahon, Bob Guralnick, Dennis Sullivan, and especially Don Zagier for helpful
and stimulating questions, comments, and corrections. I finally wanted to praise [Ca]

(which has been my basic reference) as well as [Za] and to acknowledge the support of the
National Science Foundation.

Notation, Basics, and Context

We study here integral quadratic forms defined on the two-dimensional lattice Z2, i.e.,
we study expressions

f(z,y) = az® + bxy + cy?, for a,bceZ and z,y € Z,

and we shall typically write simply f = [a, b, ¢], referring to a, b, ¢ respectively as the “first,
middle, last” coefficient of f. We say that f is primitive if ged{a,b, ¢} = 1 and shall also
call a lattice point (z,y) primitive if ged{z,y} = 1.

Of course, the symmetric bilinear form corresponding to [a,b, ] is By = ( bt/12 bﬁ 2) .
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so f(z,y) = (z,y) - By - (z,y)!, where -! denotes the transpose. The discriminant of f is
D =D(f) =b* — 4ac = —4 det By,
where det By is called the determinant of f. Notice that
b= 0(mod 2) & D = 0(mod 4)
b= 1(mod 2) & D = 1(mod 4)’

so in particular b = D(mod 2), and D is always equivalent to either 0 or 1 mod 4. We
say that f is definite if D(f) < 0, that f is indefinite if D(f) > 0, and that f is singular
if D(f) = 0. Of course, if f is definite, then a and ¢ have the same sign (which we shall
often take to be positive).

The natural action of v € PSL(2,Z) (or SL(2,Z)) is by change of basis f(Z) —
f(y - ¥) on quadratic forms. The corresponding action on symmetric bilinear forms is
By = 4" By -4 = By, and we write v.f = f' and f ~ f'" in this case. The action
evidently leaves invariant the discriminant and furthermore preserves primitivity since a
form f is not primitive if and only if there is some prime dividing each element of f(Z?)
(cf. Lemma 2 below).

This action induces the natural equivalence relation on the set of forms, and if f =
[a,b,¢] is a quadratic form, then we shall write [f] = [la,b,¢]] for the class of f. In light
of the previous remarks, both primitivity and the discriminant of a class are well-defined.
Given a discriminant D € Z (i.e., an integer equivalent to either 0 or 1 mod 4), define the
Gauss group

G(D) = {[f] : f is primitive and D(f) = D},
which at this moment is to be regarded as Just a set. When D is fixed, we shall write
simply G = G(D).

In fact, for each D, G(D) is a finite set. We shall not prove this here other than to
say that one first proves the interesting fact (due to Hermite) that given a primitive f
of discriminant D and determinant d = —D/4, there is some primitive vector 7 so that
f(¥) # 0 and |f(Z)| < |d|2. (This, in turn, is proved by simply completing the square in
4daf(z,y) and applying the Division Algorithm.)

In Disquisitiones Arithmeticae, Gauss defined a finite abelian group structure on each
G(D), which is “essentially” (cf. below) the ideal class group of Q(v/D), and here is
his original idea. Given forms fiyi = 1,2,3, we shall think of each with its own copy
(7i,yi) € Z? of the lattice, so

filziys) = aixl + bizyi + ciy?.

Following Gauss, we say that [fi][f2] = [f3] if fs(z3,y3) is transformed into the pointwise
product fy(z1,y1)f2(22,y2) by a transformation

1T

T1Y2
z3, =T .
(ea ys) T2l
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where T is a four-by-two integral matrix whose two-by-two minors generate Z as an ideal
over Z (plus a further technical condition on the signs).

We have included (nearly) Gauss’ original definition just in order to view the product
in this natural pointwise way. In fact, our starting point is actually Dirichlet’s definition
to be presented below. Our basic plan in the next two sections is to recall and then
generalize Cassels’ version [Ca] of Dirichlet’s proof that the product is well-defined on
classes of forms, and then in subsequent sections to discuss the underlying geometry in the
definite case. To close this section, let us give a quick description of some of the number-
theoretic significance and context of this Gauss product. (It is problematic as I am sure

you are more expert here than I, but I proceed nonetheless to record various facts mostly
from [Ca).)

There is a further equivalence relation on each G = G(D), where we say that two
forms are in the same genus if for all primes p the two forms are equivalent as forms over

the p-adic integers. (A specific example of two inequivalent forms in the same genus is
[1,0,82] and [2,0,41].)

As an abelian group, G(D) has a unit which we shall denote 1 = 1 € G(D), and the
genus of the unit 1p is called the principal genus. An explicit form representing 1 p will be
given when we need it later, and we choose to write G multiplicatively for our notational
convenience.

A celebrated calculation of Gauss (boiling down to the pigeon-hole principle!) de-
scribed in [Ca] proves that the class [f] € G of a form f lies in the principal genus if and
only if [f] = [g]* for some [g] € G; that is, the principal genus is G%. In fact, for any
finite abelian group, we may consider the kernel K and cokernel K* of the squaring map
g — g*; since K and K* are equinumerous Z/2 vectorspaces, we find an (non-canonical)
isomorphism K &~ K*, so in our case, we find

G/G? = {genera}
~ ker(G — G*)
={lfleg: [/’ =1}

= {ambiguous classes},

where a class [f] is said to be ambiguous if [ fI* = 1. (The terminology is due to Gauss,
and perhaps the idea is that these are the fixed points of the action of the absolute Galois
group, which is by the way simply given in this quadratic context by [a, b, ¢] > [a, —b, cl.)

Let us next make precise the sense in which G(D) is “essentially” the ideal class group

of K = K(D) = Q(vD).

If D is either unity or the discriminant of a quadratic field, then it is said to be
fundamental, so in the respective cases D = l(mod 4) and D = 0(mod 4), we have
equivalently that either D or D/4 is square-free (and in the latter case D = 46, where §
1s square free and equivalent to either 2 or 3 mod 4). Any discriminant D can be written
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uniquely as D = df? where d is fundamental, and any fundamental discriminant is uniquely
expressed as a product of prime discriminants, i.e., fundamental discriminants with one
prime factor, the list of such being —4, +8, +p with p = 1(mod 4) prime, and —q with
q = 3(mod 4) prime. (The fundamental discriminants are the basic ones in the sense that
all class numbers are calculable in terms of those of fundamental discriminants; cf. below.)

One must introduce the finer equivalence relation of “strict” equivalence on ideals
where the ideal A is identified with the ideal zA for z € K provided the norm of z is
positive (this agrees with the usual notion of equivalence in the definite case), and the
corresponding group of ideal classes is the “strict” ideal class group of K. This strict ideal
class group surjects onto the usual ideal class group, and the kernel is of order one in the
definite case and of order either one or two in the indefinite case. (Indeed for fundamental
discriminants, the kernel has order 1 if and only if the ring of integers of K has a unit of
norm -1.)

The strict ideal class group is isomorphic to the group G(D) for fundamental discrim-
inants D # 1 in the indefinite case D > 0. In the definite case, one must specialize further
and (following Gauss) consider only positive definite forms to construct a Gauss group
G+(D) (so G = Gy x Z/2Z), and then it is G+(D) which is isomorphic to the strict ideal
class group for fundamental discriminants D < 0.

In either the indefinite or definite case, though, there are vast databases of class
numbers available (as well as related data). In fact, we were surprised to learn that this
formulation of class numbers in terms of quadratic forms is perhaps the most tractable
approach computationally, and as a practical matter, special values of Dedekind L functions
are actually estimated in terms of quadratic form data (rather than the other way around!).
We shall see later how to interpret this known data in the definjte case in terms of the
geometry of hypercycles in the modular curve.

From a contemporary point of view, then, the Gauss groups can be thought of as
a sort of quadratic pre-cursor to Kummer’s ideal class groups, certainly at least in the
definite case to which we shall turn our attention shortly. On the other hand, Gauss’ genus
theory (together with the Hasse-Minkowski invariant) is the contemporary formalism for
the local-to-global theory of binary quadratic forms over Z.

Dirichlet’s Definition and Its Elementary Consequences

Let us first observe that if [a, b, ¢] is a form of discriminant D, then we may solve for

2_ 2_ . ; L
bMD to conclude that al® =L where we write ulv for u,v € Z if u divides v.

C=

Now suppose that f; and f, are primitive forms of the same discriminant D. We
say that fi and f, are (Dirichlet) unitable if their classes [f1] and [f2] admit respective
representatives [a;, by, ¢y] and [as, bs, ¢3] where
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(i) ged{ay,as} = 1.

We shall say that the specific forms [a;, b, ¢;] and [a2, b, ¢] are themselves (Dirichlet) united
in this case.

According to our observation above, there is an integral form [ayay, b, #] of discriminant

D if and only * = 2:02 is integral; meanwhile, we similarly conclude that 4ay|b? — D and

4az|b* — D, so the assumed relative primality of a; and ay (together with the fact that
b= D(mod 2)) guarantees the existence of an integral form [a;ay,b, ] of discriminant D.
At the same time, since

b2 - D cy C2

daray  ay  a;’
one can check without pain that the form [ajaz, b, ¥] is primitive if the forms f1 and f5 are
primitive.

In fact, Dirichlet proved that two classes of primitive forms [f1],[f2] of the same
discriminant are unitable, and if [a;,b, ¢;], [az, b, c2| and [af,¥', c}], [a}, b, ¢}] are pairs of
united representatives of [fi], [f2], respectively, then [lara2,b,#]] = [[a}a}, ', +']]. Thus,
the (Gauss) product

[£lfe] = [[araz, b, 4]

is well-defined. This is Dirichlet’s formulation of Gauss’ product, and we shall prove (a
generalization of) its well-definedness in Theorem 6 below.

Observe that the relative primality condition (ii) is not really so natural, for instance,
it is not invariant under the action of PS L(2,Z). A weaker (and in a sense weakest possible
analogous) condition (in the notation above) is

=y b2—D : b*—D
(ii') f252; € Z, that is, ajay| =,

A pair of forms satisfying conditions (i) and (ii') is said to be ( Cassels) concordant, so a
united pair is automatically concordant. Given a concordant pair as above, one defines a
putative product using the same formula as before.

First of all, Cassels proves that the putative product is well-defined on concordance
classes. We shall find that his proof generalizes handily to the more general setting of (a
concordance/united type extension of) the Butts-Estes formulation to be discussed in the
next section. Secondly, in the definite case, we shall prove a kind of PSL(2,7Z) invariance
of concordant pairs geometrically.

Our immediate goal (in the next section) is to formulate a concordance version of the
Butts-Estes-Pall product and (following Cassels) prove that this product is well-defined;
only after these general considerations do we turn finally to definite forms and the modular
curve.

For the remainder of this section, let us Just assume temporarily that given two ele-
ments of G, there are concordant representatives the class of whose product (as above) is

well-defined, and let us investigate some of the elementary group-theoretic consequences.
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It is convenient and traditional just now to call the equivalence relation generated by
PSL(2,Z) (proper) equivalence and denote it by ~ or ~,; we shall say that two forms £ F
are improperly equivalent if there is a two-by-two integral matrix + of determinant -1 so

that v.f = f'. (So improper equivalence is not an equivalence relation in this standard
parlance. )

Here are three useful calculations and tricks:

® [a,b,c] is properly equivalent to y.la,b,¢] = [e,~b,a] using the matrix
v = ? —01 , and we call this a “fip”.

® [a,b, ] is properly equivalent to .[a, b, c] = [a, b+ 2af, al® + bl + ¢] using
¢

the matrix v = ( [1) 1)1 and we call this “translation by #”.
* [a,b,c] is improperly equivalent to y.[a,b,c] = [a, b, ¢] using the matrix

= (—01 (1) , and this is the action of Galois as was mentioned before.

The unit 1p of G(D) is evidently represented (with middle coefficient b) by [1, b, "24;0],
and we may translate to arrange that b = 0, 1 so that

_ J[1,0,=2]); if D =0(mod 4),
1o = {[[l, 1, %]]; if D = 1(mod 4).

We also have
[la,b,el] (fe,b,al] = [[ac,b, 1]) = [[1, ~b, ac]] = 1p,

so inversion in the group G is easily described in general as

([a, b, c]]_l = [[e, b, al].

To close this section, we briefly discuss several generalities, and to begin, we claim that
[f]* = 1p (that is, [f] is ambiguous) if and only if any representative of [f] is improperly
equivalent to itself. Indeed, [f] is ambiguous by definition if and only if [f] = [f]~?, so
if [a, b, c] represents [f], then [a,b,¢] ~p [c,b,d] ~p [a,—b, c], which is in turn improperly
equivalent to [a, b, c].

As to explicit representatives of ambiguous classes, we have the following two families
of ambiguous forms

[a,0,c], for D = —4ac,
[a,a,¢], for D = a(a — 4¢).
It is straight-forward to check that these forms represent ambiguous classes using the

tricks and remarks above, but the proof that these represent all ambiguous classes requires
a small further discussion of reduction theory.

=
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For the reduction to canonical forms, one uses the tricks above and some further
calculations to prove

® A definite form is equivalent to a “reduced” form [a,b,c] where |b| < a < ¢,
and with the exception of [a,b,d] ~ [a,—b,a] and [a,a,c] ~ [a,—a,c], no two
reduced definite forms are equivalent.

* An indefinite form is equivalent to a “reduced” form [a,b,c] with 0 < b <
VD and VD - b < 2|la| < VD + b, and in this case, the reduced forms
are partitioned into disjoint “cycles”, where two reduced indefinite forms are
equivalent if and only if they lie in a common cycle.

In either case, one considers the principal root

L —b+VvD
N 2a

sow solves the quadric az?+bz+4¢ = 0 and transforms as usual (by integral fractional linear
transformations) under the action of PSL(2,Z). In the definite case, a form is reduced if
and only if the principal root lies in the usual fundamental domain for PSL(2,Z). This
is the classical geometric identification whose elaboration is really the main focus of this
note. In the indefinite case, the corresponding identification is to consider the two real
roots of az? 4 bz 4+ ¢ = 0 as the endpoints of a hyperbolic geodesic which is normalized
(i.e., reduced) so that it hits the usual fundamental domain of PSL(2,Z), and this geodesic
corresponds to a cycle of equivalent reduced indefinite forms.

Returning finally to ambiguous classes in either case, the respective reduction al-
gorithms show that every ambiguous class contains an ambiguous form. (Furthermore,
among reduced definite forms, only [a, a, a] and [a, 0, a] admit isotropy in P.S L(2,7Z), while
isotropy for indefinite forms is related to integral solutions of the (positive) Pell equation
u? — Dv? = 44,)

Concordance Extension of Butts-Estes United Forms

We shall say that two primitive classes [f], [f2] are unitable if D(f;) = t3d for some
discriminant d with ¢; € Z for i = 1,2, Le., if D(f1)D(fz) is an integral square. In this
case, we may set

ti = ti/ged{t1,t3}, fori =1,2.

Following [BE], we shall say that a pair of forms representing the classes [f1], [f2] are united
if there are respective representatives of the form

h= [Gl,f;b,fizazc],

f2 = [ag, thh, th 2 ay ),
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where ged{a;,ay} = 1. We conclude from primitivity that ged{a;,#.} = 1 for i = 1,2, and
furthermore ged{#;,¢,} = 1 always holds.

Given united forms in the notation above, we may scale the forms (destroying primi-
tivity) to produce forms of the same discriminant (tht1)?d = (t122)%d, namely,

2
tyfr = [thay, tythh, ) thagc],

ty f2 = [thaa, tithd, 4 ¢, % ay c),

which thus also have the same middle coefficient. Define the product of unitable classes to
be the class of [ajas, b, ¢], i.e.,

[Allf2] = [laraz, b, ],

which we may think of as arising by applying the formula for the product of Dirichlet
united forms here to the non-primitive forms tyf1,t) f2 and finally scaling by (¢3t5)71.
One finds that [ayas,b, c] is primitive and its discriminant is (ged{t1,t2})%d.

The result from [BE] or [BP] which is relevant to us here (which follows from our
Theorem 6 and is not the main result of these papers) is

Theorem [BE] Given two unitable classes, there exist united representatives, and the class
of the product is well-defined. Fizing a fundamental discriminant d and setting S(d) =
i>1 G(t*d), the product above gwes S(d) the structure of an abelian semaigroup.

Though [BP] similarly describes a product in the unitable case (using module-theoretic
methods), it is the [BE] notion of united representatives that is most important for us here.
By the way, [BP] remarks that Gauss already knew about extensions of the product beyond
the case of primitive forms with the same discriminant, and Estes and I have checked
that the full semigroup is more or less already described in Disquisitiones Arithmeticae.
Moreover, upon further review. Estes tells me that Theorem 6 below follows from remarks
of Gauss plus remarks in [BE].

To get some sense of these semigroups S(d) before we continue, it seerns worthwhile to
pause and recall what is known from order theory: If p is a prime and D is a discriminant,
then all of the primitive classes with discriminant p*D are represented by the primitive
forms on the following list of forms: [a, pb, p®c], [ah®+bh +c, p(b+2ah), p* a], where [a, b, c]
runs over G(D), and h runs through all integers from 0 to p— 1. Of course, it follows from
primitivity that then ged{a,n} = 1. We shall not take the time to prove this here since
we shall really only need the fact that if n? divides the discriminant of a form f, for some
integer n, then f is equivalent to a form so that n divides the middle coefficient and n?
divides the last coefficient. (This is easily proved directly by taking a representative of the
class whose first coefficient is relatively prime to n as in Lemma 2 below, completing the
square, and then translating.)

In fact, there are canonical surjections ¢ (n®*D) = G(D) defined by simply taking the
product with 1p (and the cardinalities of these kernels are known explaining why it suffices
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to compute class numbers only of fundamental discriminants). Thus, the directed system
of Gauss groups has a natural inverse limit, which seems to have not been studied. There
is also the following amusing and immediate consequence: Given discriminants D and n?D
and any prime g, the classes of order ¢* for some k > 0 in G(n®D) map under the canonical
surjection to classes in G(D) of order ¢* for some i < k.

In order to give an example of the Butts-Estes-Pall product and to better explain the
canonical surjections, we observe that if [f] has discriminant n2D, then by the discussion
above we may find a representative of the form [a,nb,n’c] with ged{a,n} = 1. To take
the product with 1p, we may translate (in each case of b even or odd) our standard
representative nlp to arrange that the middle coefficient agrees with nb and the first
coefficient remains n. The product [f] 1p is thus represented by [a, b, ], where we solve
for ¥ so that the discriminant is D, i.e., we have [[a,nb,nc]] 1p = [[a,b, ]].

Here finally is the concordance extension of the Butts-Estes definition. We shall say
that two unitable forms are concordant if they admit united representatives, but where we
remove the condition that ged{a;,a;} = 1. Just as in the previous case, we use the same
formula

[al,t;b,tgzagc] [Gg,t;b,tlzzalcl = [ajay,b, ]

to define a product of concordant forms. The main result of this section is simply that
this product is well-defined on the level of classes (and this subsumes all the various well-
definedness-of-product results mentioned before). This extension may seemn stupid until
one realizes that

Lemma 1 Suppose that [ai,bi,ci] for i = 1,2 are primitive forms of respective discrim-
inants Dy, Dy, where biby > 0. Then the two forms are concordant if and only if the
following two conditions hold

° leg = ng'f, and thus D; = t?d and b; = bt; for i = 1,2,
b= d(ged{t;,ty})?
- y

® aja,|

Notice that the conditions b;b, > 0, Db = Db} of the lemma are equivalent to the
condition b1 y/|Dy| = by1/|Dy|. The point of Lemma 1 is that the discriminant divided
by the square of the middle coefficient is an “invariant” (whose geometric significance we
discover in the next section) which puts concordance into proper perspective and simplifies
subsequent calculations.

Proof It is immediate that the stated conditions follow from the definition of concordance,
For the converse, suppose first Just that fi = [a),b;,¢1], fo = [az, ba, c3] satisfy Dyb: =
Dybi. It follows that D; and D; have the same square-free kernel, so we may write
D, = dt?,D, = dt? (possibly in several different ways) and set ¢! = ti/ged{t,,t2} as
before. Thus, we find that ty f1 and t] fo have the same discriminant, so D / b} = D,/ b2
gives thby = t1ba (and it is here that we use the hypothesis of the lemma that b, b, > 0)
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Since ged{t},ty} = 1, we conclude that b, = bty and by = bt} and have proved

tfzfl = [t;al,t;téb,t;(:l],
tfo = [tias,t1t5b, ) cs).

As to the integrality condition, just notice that (for ajaz #0)

bz o= d(gcd{tl,tl})2 - 1 6‘2 = dtf

4:0‘.1 s t"'.z 4(11 ag

, ford=1,2,

and so (even if aja; = 0), agt;2]c1 and altfzzlcz. It follows directly from this that fi, fo
are as stated. g.e.d.

In order to prove that the product of concordant forms is well-defined, we continue
by recalling several standard lemmas (from [Ca]), where we must here observe that the
standard hypothesis of primitivity is a red herring. For this reason, to abide by our stated
goal of remaining self-contained, and because of their geometric significance, we shall also
briefly recall the proofs. Here are the three lemmas:

Lemma 2 Given a primitive form f and any integer M, there is a primitive vector (z,y)
with f(z,y) relatively prime to M.

Lemma 3 If f; = [ai, bi,ci], for i = 1,2 are (not necessarily primitive) forms with
ged{ay, a3} = 1 and b; = by(mod 2), then there are translations ~;,~, € PSL(2,Z) so
that y1.f1 and ~,.f, have the same middle coefficient.

Lemma 4 Suppose that f; = lai, b, c;], for i = 1,2 are (not necessarily primitive) forms
and that there is some £ € Z so that

lley, flez, and ged{ay,ay, 0} = 1.

Then
[al,b, C]] ~ [az, b, Cg] = [t?a_] . b, f_IC]] ~ [Eag, b, 5_162].

As to the (absolutely standard) proof of Lemma 2, consider the primes p that divide
M. Define z,y by taking ply, p+ = if p+ a (and similarly taking ple, p+ y if p+ ¢),
while if pla, plc, then p+ b by primitivity and we take p+4 z, p+ y. Since ged{z,y} =1
by construction, there is some ~ € PSL(2,Z) with first column (z,y)*, whence the first
coefficient of ~.[a, b, ¢] is relatively prime to M.

For Lemma 3, since ged{a1,a3} = 1, there are integers {y, ¢5 with a1l — ayly = 1.
Since by = by(mod 2), we may translate f; by €i(bs —b1)/2for i = 1,2 to arrange that the
forms have a common middle coefficient.

Lemma 4 requires a small calculation. Since we assume f; ~ f, (whether or not

they are primitive), there is some v = (; :) € PSL(2,Z) with v.f; = f,. Equating
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coefficients (and using that f;, f; have the same middle coefficient), we may eliminate r, u
(this is the calculation) to get

ays+cot =0,

ass + it = 0.

(1g

Since £|c; and ged{ay,as, ¢} = 1, we conclude that ¢ |5, and the matrix ( does the

#
’t
trick. Notice that the form resulting from a primitive form via Lemma 4 is not necessarily
primitive (for instance, if £|b and £2|c).

Proposition 5 Unitable classes admit united representatives.

Proof Given primitive classes [f3], [f2] of respective discriminants Dy =t}d, D, = t2d, we
may choose (as before) representatives f; = la, b1, ¢1], fa = [az, by, o] with ged{ti,a;} =1
and t|b;. Let us then apply Lemma 2 to arrange that ged{as,as} = 1, so that then tiay is
relatively prime to tha;. Since ¢} f; has the same discriminant as t} f2 (and discriminants
and middle coefficients always have the same parity mod 2), we conclude that thoy =
tiba(mod 2).

By Lemma 3, we may translate to arrange that tyf1 and ¢ f, have the same middle
coefficient. Since they also have the same discriminant, we find

Dl - tl;Dl - t;zDg - Dg
b (B6)  (tibe)? B2

so the first condition of Lemma 1 holds, and b1b, > 0 is automatic. One checks the
integrality condition as usual using that ged{a;,a;} = 1, so the forms are concordant by
Lemma 1 and in fact united since ged{ay,az} = 1. g.e.d.

Theorem 6 The class of a product of concordant forms is well-defined giving S(d) the
structure of an abelian semigroup for d fundamental and G(D) the structure of a finite
abelian group for any D.

Proof Following [Cal, suppose that we have two concordant pairs
g
f]Jr = [a’htib’!t?aéci]?
fa2 = lay, 630, 12 ']

and similarly f{', f3 of primitive forms representing a pair of unitable classes. Applying
Lemma 2 twice (the first time to f! with M = tithajayaldy and the second time to B
with M = t{tyajajalala;), we may find united representatives, say

f1 = [al,t'lb, t;ZCLzC],
fa= [ag,t;b,t?a]{:],
respectively, where

gediar,az} = 1 = ged{ayaz, tytha)aya)all}.

12



We shall show that

[a1az,b,¢] ~ [a}ay, b, ¢],
and the result then follows by symmetry (of primed and double-primed variables).

To this end, by the relative primality of aja, and tityalal, we may apply Lemma 3
as in the proof of Proposition 5 to conclude that there are integers B, C, C' with

{alaihb: C] ~ [Glﬂ.z,B,C] = .fv [aiaé,b’,c'] o~ [aia;,B,C'] == Jﬂz

fi ~ [a1,t] B, t2a,C] = fi, fi ~ a},t1B,t2ayC") = f,
f2 ~d [az,téB,t?a]C] - f?s f‘Li = [agat;B?t?a; C,] - fé

Furthermore, since f; and f] have the same discriminant, we find aja,C = a) ayC’, and
by the relative primality of ajas and aa}, there is some integer K with C' = a}a}K and
C" = ajay K. Thus, in fact

.f=[ala273’a;a’2K] Ja:[allag!?BvalaZK]
fi = a1, 2, B,ttaya}d} K], fi = [a},t) B, t2ayaas K],
fa= laz,t, B, t7a1alay K], fi = [a5,15B, t7 ajayas K],
and it remains only to show that f~f. . .
Since fi ~ fi ~ f{ ~ fi, we may apply Lemma 4 with ¢ = tia) to fi ~ fI to conclude

that
[tia1ay, ) B, taza) K] ~ [tiaias,ty B, taay K],

and so .
[a1ay, B,ajay K] ~ [a1a5, B,a1a;: K] = f'.

Applying Lemma 4 in the same way to fo ~ f} with £ = tha; gives
f = laras, B,d} a} K] ~ [aray, B, a\a; K],

so indeed f = f', completing the proof of well-definedness.

Associativity follows as above using Lemmas 2 and 3, units and inverses have already
been discussed, and commutativity is obvious. g.e.d.
The Geometry of Fundamental Roots

Let w(f) = “—b";,fl be the fundamental root of the primitive form f = [a,b,c] of
discriminant D. We assume in this section that f is definite, so D < 0. Thus,

w(f) = —;Eb+\/—‘11/% = §+\/——1\/§ € Q+V-1/Qq,

13



where p,q,r,s € Z, and we may take ged{p,q} = 1 = ged{r,s}, and r,s > 0. A point in
upper half space & with rational real and square imaginary parts will be called simply a
CM point of U, since (as Zagier points out) these correspond to the elliptic curves that
admit a complex multiplication. In fact, one can easily check directly that each element
of PSL(2,Z) leaves invariant this CM locus, and it therefore descends to the collection of
CM points on the modular curve M = If [PSL(2,Z) itself.

A direct calculation using high-school algebra (which we omit and which is surely
standard) proves

Proposition 7 Given ¢ CM point w = f;— + =1 \/§ € U, the positive definite primitive
form f(w) proportional to

flw) = [g°s,—2pgs,p*s + ¢*r]

inverts the formula above for fundamental roots.

In our first proof of this (unaware of the direct calculation above starting from the
fundamental root), we worked in Minkowski space, and it is worth briefly deseribing this for
the insights it affords. Identify R® with the space of all symmetric bilinear pairings as usual

w—u v

by (u,v,w) — —— Pass to positive real projective classes of rational forms

v
and identify a ray from the origin with its point of intersection with the unit hyperboloid;
one sees the two disk components of projective definite forms (corresponding to first and
last coefficients both positive or both negative) and the annulus of projective indefinite
forms. Direct calculation shows that the function in Proposition 7 is given by radial
projection of the upper sheet from (0,0,-1) followed by the usnal complex fractional linear
transformation mapping the Poincaré disk (the unit disk at height zero in R®) to &/. This
establishes an isomorphism between the set of projective classes of positive definite rational
quadratic forms and the set of CM points in /.

As to the primitive form f = f(w) in the projective class of f' = f'(w), observe that
if 7 is a prime dividing the coefficients of ', then mlq or 7|s (since = divides the first
coefficient), and in either case r|q if and only if m|s (since 7 divides the last coefficient and
using the assumed relative primality of p, q and 7,s). Thus, if = divides the coefficients of
f', then w|ged{q, s}.

In particular, if ged{q,s} = 1, then f' = f is itself primitive, and in this case the
discriminant is D = —4q*rs. One sees that our map above is wildly discontinuous. One can
go a bit further and show that ged{q, s} ged{q, s/ged{q, s}} actually divides the coefficients
of f', but the explicit calculation of the primitive form f in the projective class of f' seems
to be out of reach. We regard this overall scale as essentially non-geometric data and must
stick to homogeneous rational functions of degree zero in the coefficients.

In light of the previous discussion about unitable pairs of forms, we are led to consider
the level sets of D/a®, D/b* D/¢?, for if two primitive forms lie on a common level set of
one of these functions, then they are necessarily unitable. Setting w = % +of=1 /=
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u++/—1v €U, one finds that

G o
D 2:—-2 — = — & = —,
/a a® & P V=3
2
DIV =—f & "=pL o y=1p,
s q

2 g r . _
D/c*=—+* & 27_1:%\@*\/; & 7 =ut 4 (w—y12

where o, 3, > 0. These respective loci are thus horizontal lines, rays from the origin, and
circles tangent to R at zero as in Figure 1.

012 = -2 beo
on? = -32650) ¢ Wbl

(D/e? = 7 7

(D/a% = )
1 2_ w3
(Dl =72

) {D/a?=—a fl

Figure 1

To understand the corresponding loci in &/ and M, we first recall some standard
hyperbolic constructions of Poincaré. The limit of a pencil of hyperbolic circles in U
passing through a common point as the radius and center approach infinity is called a
horocycle. In other words, a horocycle in ¥ is either a horizontal line ( “centered” at
infinity) or a Euclidean circle in 2/ tangent to R (“centered” at the corresponding point of
tangency). An e-hypercycle to a geodesic g in U (i.e., g is a vertical half-line or a Euclidean
semi-circle perpendicular to R) is a component of the locus of points at distance € > 0 from
¢. In particular, there are two e-hypercycles for each € > 0, and g is itself the 0-hypercycle
to g. (Put another way, these hypercycles are the loci of constant curvature which we
think of as interpolating between geodesics and horocyeles; as such, Bonahon has asked
the reasonable question of whether the hypercyclic flow is also ergodic.) In particular,
the hypercycles to the imaginary axis in I/ are simply the Euclidean rays from the oTigin.
See Figure 1. Projections to M of horocycles centered at infinity or hypercycles to the
imaginary axis in I will be called simply horocycles or hypercycles in M. See Figure 2.
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hypercycle
horocycles Jﬁarge slope

Figure 2

The horizontal foliation in I/ corresponds to the horocycles centered at infinity, and the
leaves of this foliation descend to simple closed curves in M provided they lie above height
one (ie., provided they have hyperbolic length less than unity). We shall refer to this
canonically foliated once-punctured open disk as the “cusp™ of M and to its complement
as the “body” of M. Let us take the Euclidean heights of these embedded horocycles (or
equivalently their hyperbolic lengths) as a parameter, so the “n-horocycle” in M is the
horocycle in the cusp corresponding to the leaf at height n=zlinld.

Insofar as each hypercyclic ray is asymptotic to the puncture, there is a first and last
intersection of any hypercycle with any horocycle that it meets, so each hypercycle has
naturally two ends. Furthermore, an end of a hypercyclic ray is standard in the cusp,
namely, it is modeled (up to rotation) on a line of constant slope in Y. Thus, an end of a
hypercycle in M is described by one real parameter (a “slope”) plus a choice of sign (so
a “signed slope”), or equivalently by a signed distance (namely, along a fixed embedded
horocycle to this last intersection).

In fact, the parameter ¢ above for hypercycles is useful only in that discussion, and
we shall actually use a different parameter for hypercycles, namely, the o-hypercycle to
the imaginary axis in ¢ is the one of Euclidean slope o.

This is the first of several appearances of this Euclidean structure on the modular
curve, and there is truly something to observe in contrast to the usual case. It is pre-
cisely because we are taking hypercycles to a bi-infinite geodesic running from puncture
to puncture that this Euclidean structure is defined. (In contrast, the attempt to define
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an analogous structure relative to a closed geodesic is foiled by the remaining degree of
freedom given by translation along the geodesic. )

Notice that the o-hypercycle flips to the (—o)-hypercycle, so we shall also speak of
the |o|- hypercycle in M. Usually when we uniformize a hypereycle on M, we shall take
the representative in ¢ with positive slope.

It seems worth pausing to describe two figures. An easy calculation using Proposition 7
and our formulas for ambiguous forms shows that the fundamental roots of the ambiguous
forms consist exactly of the CM points either lying on the geodesic in M corresponding
to the imaginary axis in & or lying on the projection to M of the frontier of the usual
fundamental domain for PS L(2,Z). Furthermore, an easy verification using Proposition 7
and our formulas for units of Gauss groups, shows that

Vv E2; if D = 0(mod 4),
w(lp) =
3+ 1/1|'4£; if D = 1(mod 4).

Thus, all units except 1_3 and 1_,; have fundamental roots lying in the cusp, and their
lifts to the usual fundamental domain for P.S L(2Z) in U alternate between real part zero
and real part +1 as illustrated in Figure 3.

ambiguous
classes

Figure 3

Our final figure to consider is standard and rather involved. First, take the Farey
tesselation 7, (i.e., the tesselation of I generated by reflecting the triangle spanned by
0,1, 00 about its sides, and so on), so the full symmetry group of 7, is exactly PSL(2, Z).
Furthermore, PSL(2,Z) acts transitively on the set of oriented edges of T+, SO any hyper-
cycle to any geodesic in 7, admits a lift to I as a ray from the origin of positive slope. As
usual, the ideal points of 7, are given their Farey enumeration by the rationals, and the
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PSL(2,Z)-orbit of the horocycle at height one is a circle-packing, where at each rational
number of the form p/q we take the Euclidean circle of radius 1 /¢*. See Figure 4 and
imagine how hypercycles to the edges of 7, may intersect one another and how they may

intersect the horocycles in this circle-packing; these are the sorts of configurations in M
we shall consider below.

R N N 0 1 1 3 2
1 2 1 2 1 2 1 2 1
Figure 4

Armed with this discussion of hypercycles and horocycles in M , we return to our
calculations before of level sets of D/a2, D/b?, and D/c*, which we find correspond re-
spectively to horocycles centered at infinity, hypercycles, and horocycles centered at zero.
It is a nice picture. We shall concentrate on the hypercyclic case and relegate the discussion
of the (interesting!) horocyclic case to the next section.

It is time to reap some results from the discussion, and it is cleanest to formulate
them on the level of M. We shall simply identify not only a form with its corresponding
CM point in U but also its class with the corresponding CM point of M. Thus, if f is
a definite form, then we think of f = w(f) € U and [f] = [w(f)] € M. Furthermore, if

h is a hypercycle in U to a geodesic in T«, then we shall let [h] denote the corresponding
hypercyele in M.

Corollary 8 [fi],[f2] € M are unitable if and only if they lic on a common hypercycle.
Furthermore, if [f1],[f2] lie on a common horocycle, then they are unitable as well.

The first part follows from the discussion above and Proposition 5, but notice that two
CM points on a given hypercycle might not represent concordant forms, that is, we may
have to choose another hypercycle to see them as concordant. Indeed, given a concordant
pair f1, fa, there is a corresponding hypercycle h to the imaginary axis with fi,f: € h
The second part also follows from the previous discussion, and there is the amusing (and
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it seems to me highly non-trivial) geometric consequence that two CM points of M which
lie on a common horocycle also lie on a common hypercycle (and we wonder about the
converse).

Corollary 9 Suppose that f,, f, are concordant, say with corresponding hypercycle h.
Then [f1](f2] also lies on the hypercyele [R] in M.

There is truly nothing to prove in light of Theorem 6. This is a remarkable “focusing”
property of hypercycles on the modular curve and explains the basic connection between
geometry and the Gauss product. We shall further develop this theme and give a geometric
characterization of the product in Theorem 13 below. It is worth pausing, though, and
and inviting you to imagine products, relations, squares, and units in the Gauss groups
from this geometric point of view.

In preparation for our next result (which is a basic compactness property of M), we
develop some generalities about the distribution of G(D) in M. To this end, let us fix
some discriminant D and consider the various b = 0 of the same parity as D modulo two.
The points of &/ which project to G(D) and lie on the hypercycle of slope /—D /b2 are in
natural one-to-one correspondence with the various divisors of (b — D)/4. In particular,
the first and last such points evidently represent the unit 1p, and we have

Proposition 10 For any discriminant D, each point of G(D) lies either in the body of M
or in the cusp of M below 1p.

It might be interesting to combine Proposition 10 with estimates (which I do not
know) for the “discriminant D injectivity radius” to estimate class numbers. On the other
hand, for any [f] € G(D), there is some b with 0 < b < /-D/3 and a representative f
lying on the hypercycle of slope 1/ —D/b?, so one observes a seeming non-uniformity in
the distribution of G(D) in M which suggests that this estimate on class numbers might
not be too handy. (Zagier points out that this and “all”® other such elementary hyperbolic
estimates on class numbers have been tried; furthermore, much more is known about the
distribution of heights of G(D) in M, for instance, all other points of G(D) are at most
half as high as 1p, and there are at most a points whose height is 1/a times the height of
1p.)

Arguing as in the proof of Theorem 6, we find that given [f],[¢] € G(D), there are
concordant representatives lying on a common hypercycle. Furthermore, for each fixed
D, we can similarly find a b = b(D) so that each point of G (D) is represented by a point
on the “saturated” hypercycle of slope v/ —D/b?. Finding such a b (which I do not know
how to do effectively) could also give an estimate on class numbers. At the same time,
it seems like a nice combinatorics problem to try and express class numbers in terms of
multiplicities on a saturated hypereycle.

Turning now to the distribution of squares of G (D) in M, suppose that [f] = [g)? €
G(D), so there is a concordant pair gy, g2 of forms representing [g] lying on the correspond-
ing hypercycle h. In other words, [91] = [g2] is a double point (i.e.. self-intersection) of [h]
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in M. A double point of the hypercycle h is said to be concordant if it arises as above
from a concordant pair of forms.

There is a particularly simple class of double points as follows: If h is a hypercycle to
the imaginary axis in i, then a cuspidal double point is a point of intersection of A with
some integral translate of the flip of 4. Thus, the imaginary axis itself (as a hypercycle)
has no cuspidal double points, and every other hypercycle has infinitely many. Notice that
any cuspidal double point lying on a hypercycle of positive slope at least two necessarily
lies in the cusp, and for any slope, all but a finite number of its cuspidal double points
necessarily lie in the cusp, hence the terminology. (It is easy to construct non-cuspidal
double points starting from Figure 4.)

Notice that hypercycles are generally dramatically far from general position. For
instance, arguing as Theorem 6, we can find hypercycles with multiple points of arbitrarily
high orders at any specified set of elements of the Gauss group. (The extent to which the
orders of multiplicity can also be specified is an interesting question.)

There is a pleasant geometric description of concordance in the case of common dis-
criminants (and at one point I thought just homogeneity of the formula was a small mira-
cle), as follows.

Proposition 11 Suppose that two forms fi,fr € U of the same discriminant lie on a
common hypercycle. Then fi, f, are concordant if and only if |fillf2| € Z, where |f|
denotes the Euclidean norm of f € U as a vector in R2.

Proof Let us write f; = [a;, b, ¢;] with fundamental root wu; ++/—1 v; € U and discriminant
D, for i = 1,2. It follows from Proposition 7 that bjai = —2p;/q; = —2u; and —D/a? =
4ri/s; = 4v?. Concordance is equivalent to integrality of

¥—-D b b L |BD
daray  2ay 2ay 4a? 4a?

= Ujuy + V102

= \/uf-l—'u]z \/ug-{—vg

= |fill f2],

where the next-to-last equality follows from the extreme case of the Cauchy-Schwarz
(in)equality using that f; and f, are parallel as vectors in R? since they lie on a com-
mon hypercycle. qg.e.d.

In fact, given two forms fi, fo lying on a common hypercycle (not necessarily of the
same discriminant), integrality of |f,||f,| is again a necessary condition for the forms to
be concordant; a further sufficient condition for concordance is that tity divide |fi]|f2| as
one can easily check. In a sense this is a perfectly suitable answer (for given two points
on a common hypercycle, we can apply the Euclidean algorithm to find their primitive

representatives, hence t1¢}, and hence verify concordance); on the other hand, we would
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hope for a more intrinsic geometric characterization of concordance for two points on a
common hypercycle.

Proposition 12 Every cuspidal double point 1s concordant.

Proof Let h be a hypercycle, say of slope § > 0. A general cuspidal double point on
h is then given by fi = n/2 + /=1 pn/2 for n € Z. This point on h translates to
-n/2+4 +/—1 Bn/2 on the hypercycle of slope —f3, which in turn flips to

| A (1++v=15)

n(l + 3?)
on h, and we find
n 2 n 243
i S —_—— =1 Z.
|f1||f2] 271(1 +ﬂ2) I 2 n(l +/82) €
The result then follows from Proposition 11. g.e.d.

Here is the promised geometric interpretation of the product (and Sullivan points out
that never mind anything else, this is a theorem about the Euclidean plane).

Theorem 13 Suppose that f,, fo are concordant with corresponding hypercycle h. Then
[f1](f2] s represented by the point f € h closest to the origin with the property that when-
ever fi, fo translate to concordant forms on the corresponding hypercycle k', then f also
translates to h'.

Proof First we show that the usual product on h has the property stated above for 7,
and then we show that this is actually the closest such point f to the origin.

Suppose that
fl = [al,t;b, CLQ'&?CJ, and fg = [ag,flzb, alt’fc]
are primitive concordant forms which translate respectively to (primitive) concordant forms
fi = [a1,] B, ast?C], and fz = [a2,t5B, a1 t2C)],
so that we have
Bl = t;B = f;b + 261(11, and B’Z = t;B = t’zb + 262&2.
Solving t, B, = 1 Bs, we find

(*) t'2€1a1 It;EQGg.

Of course 1 = ged{t},t}}, and also 1 = ged{t,a1} = ged{ty,as} by primitivity. One
concludes from (#) that therefore

(¥%) tiaz|lray;
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furthermore, ¢} as divides the last coefficient of f1 by inspection, so it also divides ¢; times
this last coefficient. Thus, we may show that

(1) thaz|éy(t]b)

and use that f; is primitive to conclude that therefore thas|ly, as required.

To establish that the product [a;as,b,c] has the stated property, it therefore remains
only to prove the integrality condition (1), i.e., we must prove az|bly. To this end, recall
that f1, f; and f{, f3 are each supposed to be concordant pairs, so

b* — d(ged{t, ta})?
4

B? — d(ged{t,t,})*
4 ]

a7 ﬂgl N and a1a2|

using the notation of Lemma 1. Taking the difference, we find that aa, divides

B2 -8 1 (£B)? — (tib)?

4 2 4
1 (b + 20a:)? — (1b)?
B 4

= t'i"‘ fia,'('t;b-l—f,'a,'),

foreach: = 1,2. Takingi =1, multiplying by #, and dividing through by ay, we conclude
that
tllzaglfl (t; b -+ 810‘,1 )

On the other hand, we have that t,as|¢;a; from (**), so t{ay divides the second term.
Hence, t{a; also divides the first term, completing the proof of the first part (as was
explained before).

We must still prove that the product is closest to the origin. Specifically, we show
that if a € Z satisfies

Bt} = bt} (mod 2
! 1(mo al)} B = b(mod 2a),

Bt = bty(mod 2a,)

then alajaz, and the desired result then follows from the formula for the real part of the
fundamental root. To this end, first notice that Bt} = bt;(mod 2a;) < B = b(mod 2a;)
since ged{t;,a;} = 1, for i = 1,2. Thus, we may take ¢} =ty = 1 in the previous inset
equation.

Now, given a € Z, let us take B = b+ 24q, az, for £ € Z, where ged{f,a} = 1. Reduce
modulo 2a to find that

alfal ag,

and use ged{f,a} = 1 to conclude that indeed alayas. g.e.d.

22



To the extent that our characterization of concordance is not completely geometric,
as discussed above, so too is the characterization of the product in Theorem 13 deficient.
(It may be that a converse of Theorem 13 holds and gives the desired entirely geometric
description of concordance as well as the product.)

To close, we offer brief remarks on several disparate topics. Throughout this discus-
sion, we shall refer to a torsion-free finite-index subgroup I" of PSL(2,Z) as an arithmetic
group.

Clever Euclidean Geometry

Consider homothety H a(z) = Az on z € U, so for each \ > 0, H) setwise preserves
each hypercycle to the imaginary axis in /. We wish to analyze two cases of forms [a, b, c|,
namely, in the first case: A|b, A%|c (and hence also ged{a, A} = 1); and in the second case:
Ale and ged{),a} = 1.

In the first case, the map H,-: is simply the well-defined homomorphism multiplica-
tion by 1, /a2 as we calculated before. In the second case, at least Hy-1 is well-defined as
follows from Lemma 4 above. Of course, we wonder the further extent to which homothety
is well-defined on classes of points on a hypercycle, and we find it remarkable that the
Euclidean geometry is somehow clever enough detect these cases so that homothety acts
in its correct well-defined way on these points on a fixed hypereycle in each case.

Definite Forms in the Arithmetic Case

For any arithmetic group T, we can consider ['-equivalence classes of definite forms to
get a corresponding collection of CM points in the surface I/ /T. 1t is of course tempting to
define the notion of I'-concordance and I'-Gauss groups geometrically (perhaps by analytic
continuation along hypercycles), but I am not certain of some of the details. An improve-
ment in our geometric characterization of concordance would presumably illuminate these
points and lead to a simple definition of I'-Gauss groups. We have also worked on this
algebraically for the congruence subgroups I['(N), and it looks promising (to simply mimie
Lemmas 2-4 above with specified residues modulo N of certain coefficients).

From the point of view of the absolute Galojs group and the universal Ptolemy group
(cf. [P2]), the inverse limit of such I'-Gauss groups (over the usual subgroups of PS L(2,Z)
directed by reverse-inclusion) seems a natural construction.

Multiplication on Horocycles

Turning to the case of two forms lying on a common horocycle in ¢, Estes tells me
that the classical point of view gives no clue on what to expect from the Gauss product in
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this case, but I offer the following conjectural idea. There is a canonical mvolution of the
divisible group Q/Z defined as follows: Given a representative p/q € Q with ged{p,q} = 1,
there is an essentially unique element 7 € PSL(2,Z) mapping p/q to infinity and hence the
horocycle centered at p/q of Euclidean radius 1 /q* to the horocycle centered at infinity of
height one. Take the image of p/q++/—=1/q* under v to define a new point in the horocycle
at height one and check that this image point is well-defined up to integral translation, so
its real part is well-defined in Q/Z. More explicitly, one can compute that this involution
i1s given by p/q — —s/q, where ps—rg = 1. | suspect that the Gauss product on embedded
horocycles is related to the twisting of Q/Z by this canonical involution.

It is worth pointing out that there are analogous twistings of Q/Z for each arithmetic
group I'; indeed, there is one such twisting for each puncture of the corresponding surface
F = Fr = U/T. Explicitly, given a CM point € on a small horocycle near a specified
puncture z of F', consider the geodesic through ¢ asymptotic to z; the other end of this
geodesic is asymptotic to another puncture y of F. If  # y, then ¢ is taken to be a fixed
point of the involution, whereas if z = Y, then the involution interchanges ¢ and n, where
n arises as the intersection of the small horocycle about « = y with this other end of the
geodesic.

My original intuition about this was that it should be some sort of “jet of Gauss
groups” of definite forms about a singular form. This is a reasonable geometric analogue
of considering pairs (ideal class, unit in underlying ring) as is efficaciously done in number
theory. Such an extension to the singular case seems to be a new idea number-theoretically
however.

Indefinite Forms in the Arithmetic Case

A basic difference between the definite and indefinite cases is that PSL(2,Z) acts
discontinuously on ¥/ in the former case (and the quotient is the modular curve M), but
it does not act discontinuously on the one-sheeted hyperboloid H in Minkowski space in

the latter case. (To see this, just take a minimal geodesic lamination on some surface
F=U/T, where I' is arithmetic.)

Our basic formulas in Lemma 1 as well as many of our calculations and arguments are
not sensitive to whether the forms in question are definite or indefinite, so there is definitely
some indefinite version of the theory we have described in this note. It certainly seems
natural to imagine #/PSL(2,Z) (the “indefinite modular curve”) as a non-commutative
space in the sense of Alain Connes.

A seemingly completely separate aspect in the indefinite case (and this was my starting
point in quadratic forms) is the connection with “Markoff tuples” as follows. Fix an
arithmetic group T, so the quotient F = i /T comes equipped with an ideal triangulation
(inherited from Farey). We have described global (“lambda length”) coordinates on the
decorated Teichmiiller space (see [P1]) relative to a specification of ideal triangulation, and
we consider the decorated surface corresponding to setting all coordinates equal to unity
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on this ideal triangulation. This point (the “center of the cell” in the parlance of [P1])
is uniformized by I its coordinates transform under our “Ptolemy transformations” to a
collection of integral coordinates, and these tuples of coordinates are called Markoff tuples
for I". The reason for the terminology is that in the case of the once-punctured torus, these
are exactly the classical Markoff triples as discussed in [P1]. (Estes pointed this out about
my formulas ten years ago!)

It seems clear how to generalize Markoff’s own argument (cf. [Di]) from PSL(2,Z) to
the case of arithmetic groups I", and we imagine each I as a group of extreme forms, in the
sense of Markoff’s theorem, indexed by the corresponding Markoff tuple. Kapranov tells
me that Seminaire Rudakov studied a kind of generalized Markoff tuple, and it will thus be
interesting to compare our constructions. As a starting point, it should be straight-forward
to just check that our Markoff tuples satisfy Rudakov’s generalized Markoff equations.
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